2 research outputs found

    An FPT 2-Approximation for Tree-Cut Decomposition

    Full text link
    The tree-cut width of a graph is a graph parameter defined by Wollan [J. Comb. Theory, Ser. B, 110:47-66, 2015] with the help of tree-cut decompositions. In certain cases, tree-cut width appears to be more adequate than treewidth as an invariant that, when bounded, can accelerate the resolution of intractable problems. While designing algorithms for problems with bounded tree-cut width, it is important to have a parametrically tractable way to compute the exact value of this parameter or, at least, some constant approximation of it. In this paper we give a parameterized 2-approximation algorithm for the computation of tree-cut width; for an input nn-vertex graph GG and an integer ww, our algorithm either confirms that the tree-cut width of GG is more than ww or returns a tree-cut decomposition of GG certifying that its tree-cut width is at most 2w2w, in time 2O(w2logw)n22^{O(w^2\log w)} \cdot n^2. Prior to this work, no constructive parameterized algorithms, even approximated ones, existed for computing the tree-cut width of a graph. As a consequence of the Graph Minors series by Robertson and Seymour, only the existence of a decision algorithm was known.Comment: 17 pages, 3 figure
    corecore