263 research outputs found

    Pseudo-random graphs

    Full text link
    Random graphs have proven to be one of the most important and fruitful concepts in modern Combinatorics and Theoretical Computer Science. Besides being a fascinating study subject for their own sake, they serve as essential instruments in proving an enormous number of combinatorial statements, making their role quite hard to overestimate. Their tremendous success serves as a natural motivation for the following very general and deep informal questions: what are the essential properties of random graphs? How can one tell when a given graph behaves like a random graph? How to create deterministically graphs that look random-like? This leads us to a concept of pseudo-random graphs and the aim of this survey is to provide a systematic treatment of this concept.Comment: 50 page

    Counting Carambolas

    Full text link
    We give upper and lower bounds on the maximum and minimum number of geometric configurations of various kinds present (as subgraphs) in a triangulation of nn points in the plane. Configurations of interest include \emph{convex polygons}, \emph{star-shaped polygons} and \emph{monotone paths}. We also consider related problems for \emph{directed} planar straight-line graphs.Comment: update reflects journal version, to appear in Graphs and Combinatorics; 18 pages, 13 figure

    Eight-Fifth Approximation for TSP Paths

    Full text link
    We prove the approximation ratio 8/5 for the metric {s,t}\{s,t\}-path-TSP problem, and more generally for shortest connected TT-joins. The algorithm that achieves this ratio is the simple "Best of Many" version of Christofides' algorithm (1976), suggested by An, Kleinberg and Shmoys (2012), which consists in determining the best Christofides {s,t}\{s,t\}-tour out of those constructed from a family \Fscr_{>0} of trees having a convex combination dominated by an optimal solution x∗x^* of the fractional relaxation. They give the approximation guarantee 5+12\frac{\sqrt{5}+1}{2} for such an {s,t}\{s,t\}-tour, which is the first improvement after the 5/3 guarantee of Hoogeveen's Christofides type algorithm (1991). Cheriyan, Friggstad and Gao (2012) extended this result to a 13/8-approximation of shortest connected TT-joins, for ∣T∣≥4|T|\ge 4. The ratio 8/5 is proved by simplifying and improving the approach of An, Kleinberg and Shmoys that consists in completing x∗/2x^*/2 in order to dominate the cost of "parity correction" for spanning trees. We partition the edge-set of each spanning tree in \Fscr_{>0} into an {s,t}\{s,t\}-path (or more generally, into a TT-join) and its complement, which induces a decomposition of x∗x^*. This decomposition can be refined and then efficiently used to complete x∗/2x^*/2 without using linear programming or particular properties of TT, but by adding to each cut deficient for x∗/2x^*/2 an individually tailored explicitly given vector, inherent in x∗x^*. A simple example shows that the Best of Many Christofides algorithm may not find a shorter {s,t}\{s,t\}-tour than 3/2 times the incidentally common optima of the problem and of its fractional relaxation.Comment: 15 pages, corrected typos in citations, minor change
    • …
    corecore