196,108 research outputs found

    Minimum degree conditions for H-linked graphs

    Get PDF
    AbstractFor a fixed multigraph H with vertices w1,…,wm, a graph G is H-linked if for every choice of vertices v1,…,vm in G, there exists a subdivision of H in G such that vi is the branch vertex representing wi (for all i). This generalizes the notions of k-linked, k-connected, and k-ordered graphs.Given a connected multigraph H with k edges and minimum degree at least two and n⩾7.5k, we determine the least integer d such that every n-vertex simple graph with minimum degree at least d is H-linked. This value D(H,n) appears to equal the least integer d′ such that every n-vertex graph with minimum degree at least d′ is b(H)-connected, where b(H) is the maximum number of edges in a bipartite subgraph of H

    Subdivisions with Distance Constraints in Large Graphs

    Get PDF
    In this dissertation we are concerned with sharp degree conditions that guarantee the existence of certain types of subdivisions in large graphs. Of particular interest are subdivisions with a certain number of arbitrarily specified vertices and with prescribed path lengths. Our non-standard approach makes heavy use of the Regularity Lemma (Szemerédi, 1978), the Blow-Up Lemma (Komlós, Sárkózy, and Szemerédi, 1994), and the minimum degree panconnectivity criterion (Williamson, 1977).Sharp minimum degree criteria for a graph G to be H-linked have recently been discovered. We define (H,w,d)-linkage, a condition stronger than H-linkage, by including a weighting function w consisting of required lengths for each edge-path of a desired H-subdivision. We establish sharp minimum degree criteria for a large graph G to be (H,w,d)-linked for all nonnegative d. We similarly define the weaker condition (H,S,w,d)-semi-linkage, where S denotes the set of vertices of H whose corresponding vertices in an H-subdivision are arbitrarily specified. We prove similar sharp minimum degree criteria for a large graph G to be (H,S,w,d)-semi-linked for all nonnegativeWe also examine path coverings in large graphs, which could be seen as a special case of (H,S,w)-semi-linkage. In 2000, Enomoto and Ota conjectured that a graph G of order n with degree sum σ2(G) satisfying σ2(G) \u3e n + k - 2 may be partitioned into k paths, each of prescribed order and with a specified starting vertex. We prove the Enomoto-Ota Conjecture for graphs of sufficiently large order

    Separating path systems

    Full text link
    We study separating systems of the edges of a graph where each member of the separating system is a path. We conjecture that every nn-vertex graph admits a separating path system of size O(n)O(n) and prove this in certain interesting special cases. In particular, we establish this conjecture for random graphs and graphs with linear minimum degree. We also obtain tight bounds on the size of a minimal separating path system in the case of trees.Comment: 21 pages, fixed misprints, Journal of Combinatoric

    Claw-free t-perfect graphs can be recognised in polynomial time

    Full text link
    A graph is called t-perfect if its stable set polytope is defined by non-negativity, edge and odd-cycle inequalities. We show that it can be decided in polynomial time whether a given claw-free graph is t-perfect
    • …
    corecore