470 research outputs found

    Speeding up Future Video Distribution via Channel-Aware Caching-Aided Coded Multicast

    Full text link
    Future Internet usage will be dominated by the consumption of a rich variety of online multimedia services accessed from an exponentially growing number of multimedia capable mobile devices. As such, future Internet designs will be challenged to provide solutions that can deliver bandwidth-intensive, delay-sensitive, on-demand video-based services over increasingly crowded, bandwidth-limited wireless access networks. One of the main reasons for the bandwidth stress facing wireless network operators is the difficulty to exploit the multicast nature of the wireless medium when wireless users or access points rarely experience the same channel conditions or access the same content at the same time. In this paper, we present and analyze a novel wireless video delivery paradigm based on the combined use of channel-aware caching and coded multicasting that allows simultaneously serving multiple cache-enabled receivers that may be requesting different content and experiencing different channel conditions. To this end, we reformulate the caching-aided coded multicast problem as a joint source-channel coding problem and design an achievable scheme that preserves the cache-enabled multiplicative throughput gains of the error-free scenario,by guaranteeing per-receiver rates unaffected by the presence of receivers with worse channel conditions.Comment: 11 pages,6 figures,to appear in IEEE JSAC Special Issue on Video Distribution over Future Interne

    Updating Content in Cache-Aided Coded Multicast

    Full text link
    Motivated by applications to delivery of dynamically updated, but correlated data in settings such as content distribution networks, and distributed file sharing systems, we study a single source multiple destination network coded multicast problem in a cache-aided network. We focus on models where the caches are primarily located near the destinations, and where the source has no cache. The source observes a sequence of correlated frames, and is expected to do frame-by-frame encoding with no access to prior frames. We present a novel scheme that shows how the caches can be advantageously used to decrease the overall cost of multicast, even though the source encodes without access to past data. Our cache design and update scheme works with any choice of network code designed for a corresponding cache-less network, is largely decentralized, and works for an arbitrary network. We study a convex relation of the optimization problem that results form the overall cost function. The results of the optimization problem determines the rate allocation and caching strategies. Numerous simulation results are presented to substantiate the theory developed.Comment: To Appear in IEEE Journal on Selected Areas in Communications: Special Issue on Caching for Communication Systems and Network

    Fundamental Limits of Caching in Wireless D2D Networks

    Full text link
    We consider a wireless Device-to-Device (D2D) network where communication is restricted to be single-hop. Users make arbitrary requests from a finite library of files and have pre-cached information on their devices, subject to a per-node storage capacity constraint. A similar problem has already been considered in an ``infrastructure'' setting, where all users receive a common multicast (coded) message from a single omniscient server (e.g., a base station having all the files in the library) through a shared bottleneck link. In this work, we consider a D2D ``infrastructure-less'' version of the problem. We propose a caching strategy based on deterministic assignment of subpackets of the library files, and a coded delivery strategy where the users send linearly coded messages to each other in order to collectively satisfy their demands. We also consider a random caching strategy, which is more suitable to a fully decentralized implementation. Under certain conditions, both approaches can achieve the information theoretic outer bound within a constant multiplicative factor. In our previous work, we showed that a caching D2D wireless network with one-hop communication, random caching, and uncoded delivery, achieves the same throughput scaling law of the infrastructure-based coded multicasting scheme, in the regime of large number of users and files in the library. This shows that the spatial reuse gain of the D2D network is order-equivalent to the coded multicasting gain of single base station transmission. It is therefore natural to ask whether these two gains are cumulative, i.e.,if a D2D network with both local communication (spatial reuse) and coded multicasting can provide an improved scaling law. Somewhat counterintuitively, we show that these gains do not cumulate (in terms of throughput scaling law).Comment: 45 pages, 5 figures, Submitted to IEEE Transactions on Information Theory, This is the extended version of the conference (ITW) paper arXiv:1304.585

    Fundamental Limits of Wireless Caching Under Mixed Cacheable and Uncacheable Traffic

    Full text link
    We consider cache-aided wireless communication scenarios where each user requests both a file from an a-priori generated cacheable library (referred to as 'content'), and an uncacheable 'non-content' message generated at the start of the wireless transmission session. This scenario is easily found in real-world wireless networks, where the two types of traffic coexist and share limited radio resources. We focus on single-transmitter, single-antenna wireless networks with cache-aided receivers, where the wireless channel is modelled by a degraded Gaussian broadcast channel (GBC). For this setting, we study the delay-rate trade-off, which characterizes the content delivery time and non-content communication rates that can be achieved simultaneously. We propose a scheme based on the separation principle, which isolates the coded caching and multicasting problem from the physical layer transmission problem. We show that this separation-based scheme is sufficient for achieving an information-theoretically order optimal performance, up to a multiplicative factor of 2.01 for the content delivery time, when working in the generalized degrees of freedom (GDoF) limit. We further show that the achievable performance is near-optimal after relaxing the GDoF limit, up to an additional additive factor of 2 bits per dimension for the non-content rates. A key insight emerging from our scheme is that in some scenarios considerable amounts of non-content traffic can be communicated while maintaining the minimum content delivery time, achieved in the absence of non-content messages; compliments of 'topological holes' arising from asymmetries in wireless channel gains.Comment: Accepted for publication in the IEEE Transactions on Information Theor

    On the Average Performance of Caching and Coded Multicasting with Random Demands

    Full text link
    For a network with one sender, nn receivers (users) and mm possible messages (files), caching side information at the users allows to satisfy arbitrary simultaneous demands by sending a common (multicast) coded message. In the worst-case demand setting, explicit deterministic and random caching strategies and explicit linear coding schemes have been shown to be order optimal. In this work, we consider the same scenario where the user demands are random i.i.d., according to a Zipf popularity distribution. In this case, we pose the problem in terms of the minimum average number of equivalent message transmissions. We present a novel decentralized random caching placement and a coded delivery scheme which are shown to achieve order-optimal performance. As a matter of fact, this is the first order-optimal result for the caching and coded multicasting problem in the case of random demands.Comment: 5 pages, 3 figure, to appear in ISWCS 201
    • …
    corecore