4,144 research outputs found

    Optimizing cooperative cognitive radio networks with opportunistic access

    Get PDF
    Optimal resource allocation for cooperative cognitive radio networks with opportunistic access to the licensed spectrum is studied. Resource allocation is based on minimizing the symbol error rate at the receiver. Both the cases of all-participate relaying and selective relaying are considered. The objective function is derived and the constraints are detailed for both scenarios. It is then shown that the objective functions and the constraints are nonlinear and nonconvex functions of the parameters of interest, that is, source and relay powers, symbol time, and sensing time. Therefore, it is difficult to obtain closed-form solutions for the optimal resource allocation. The optimization problem is then solved using numerical techniques. Numerical results show that the all-participate system provides better performance than its selection counterpart, at the cost of greater resources

    Resource Allocation for Secure Gaussian Parallel Relay Channels with Finite-Length Coding and Discrete Constellations

    Full text link
    We investigate the transmission of a secret message from Alice to Bob in the presence of an eavesdropper (Eve) and many of decode-and-forward relay nodes. Each link comprises a set of parallel channels, modeling for example an orthogonal frequency division multiplexing transmission. We consider the impact of discrete constellations and finite-length coding, defining an achievable secrecy rate under a constraint on the equivocation rate at Eve. Then we propose a power and channel allocation algorithm that maximizes the achievable secrecy rate by resorting to two coupled Gale-Shapley algorithms for stable matching problem. We consider the scenarios of both full and partial channel state information at Alice. In the latter case, we only guarantee an outage secrecy rate, i.e., the rate of a message that remains secret with a given probability. Numerical results are provided for Rayleigh fading channels in terms of average outage secrecy rate, showing that practical schemes achieve a performance quite close to that of ideal ones

    Power Allocation Based on SEP Minimization in Two-Hop Decode-and-Forward Relay Networks

    Full text link
    The problem of optimal power allocation among the relays in a two-hop decode-and-forward cooperative relay network with independent Rayleigh fading channels is considered. It is assumed that only the relays that decode the source message correctly contribute in data transmission. Moreover, only the knowledge of statistical channel state information is available. A new simple closed-form expression for the average symbol error probability is derived. Based on this expression, a new power allocation method that minimizes the average symbol error probability and takes into account the constraints on the total average power of all the relay nodes and maximum instant power of each relay node is developed. The corresponding optimization problem is shown to be a convex problem that can be solved using interior point methods. However, an approximate closed-form solution is obtained and shown to be practically more appealing due to significant complexity reduction. The accuracy of the approximation is discussed. Moreover, the so obtained closed-form solution gives additional insights into the optimal power allocation problem. Simulation results confirm the improved performance of the proposed power allocation scheme as compared to other schemes.Comment: 27 pages, 5 figures, submitted to the IEEE Trans. Signal Processing in Feb. 201

    Relaying Strategies for Wireless-Powered MIMO Relay Networks

    Get PDF
    This paper investigates relaying schemes in an amplify-and-forward multiple-input multiple-output relay network, where an energy-constrained relay harvests wireless power from the source information flow and can be further aided by an energy flow (EF) in the form of a wireless power transfer at the destination. However, the joint optimization of the relay matrix and the source precoder for the energy-flow-assisted (EFA) and the non-EFA (NEFA) schemes is intractable. The original rate maximization problem is transformed into an equivalent weighted mean square error minimization problem and optimized iteratively, where the global optimum of the nonconvex source precoder subproblem is achieved by semidefinite relaxation and rank reduction. The iterative algorithm finally converges. Then, the simplified EFA and NEFA schemes are proposed based on channel diagonalization, such that the matrices optimizations can be simplified to power optimizations. Closed-form solutions can be achieved. Simulation results reveal that the EFA schemes can outperform the NEFA schemes. Additionally, deploying more antennas at the relay increases the dimension of the signal space at the relay. Exploiting the additional dimension, the EF leakage in the information detecting block can be nearly separated from the information signal, such that the EF leakage can be amplified with a small coefficient.Comment: Submitted for possible journal publicatio
    corecore