103,951 research outputs found

    Recoverable DTN Routing based on a Relay of Cyclic Message-Ferries on a MSQ Network

    Get PDF
    An interrelation between a topological design of network and efficient algorithm on it is important for its applications to communication or transportation systems. In this paper, we propose a design principle for a reliable routing in a store-carry-forward manner based on autonomously moving message-ferries on a special structure of fractal-like network, which consists of a self-similar tiling of equilateral triangles. As a collective adaptive mechanism, the routing is realized by a relay of cyclic message-ferries corresponded to a concatenation of the triangle cycles and using some good properties of the network structure. It is recoverable for local accidents in the hierarchical network structure. Moreover, the design principle is theoretically supported with a calculation method for the optimal service rates of message-ferries derived from a tandem queue model for stochastic processes on a chain of edges in the network. These results obtained from a combination of complex network science and computer science will be useful for developing a resilient network system.Comment: 6 pages, 12 figures, The 3rd Workshop on the FoCAS(Fundamentals of Collective Adaptive Systems) at The 9th IEEE International Conference on SASO(Self-Adaptive and Self-Organizing systems), Boston, USA, Sept.21, 201

    Simulating Problem Difficulty in Arithmetic Cognition Through Dynamic Connectionist Models

    Full text link
    The present study aims to investigate similarities between how humans and connectionist models experience difficulty in arithmetic problems. Problem difficulty was operationalized by the number of carries involved in solving a given problem. Problem difficulty was measured in humans by response time, and in models by computational steps. The present study found that both humans and connectionist models experience difficulty similarly when solving binary addition and subtraction. Specifically, both agents found difficulty to be strictly increasing with respect to the number of carries. Another notable similarity is that problem difficulty increases more steeply in subtraction than in addition, for both humans and connectionist models. Further investigation on two model hyperparameters --- confidence threshold and hidden dimension --- shows higher confidence thresholds cause the model to take more computational steps to arrive at the correct answer. Likewise, larger hidden dimensions cause the model to take more computational steps to correctly answer arithmetic problems; however, this effect by hidden dimensions is negligible.Comment: 7 pages; 15 figures; 5 tables; Published in the proceedings of the 17th International Conference on Cognitive Modelling (ICCM 2019
    corecore