58 research outputs found

    Energy Harvesting Wireless Communications: A Review of Recent Advances

    Get PDF
    This article summarizes recent contributions in the broad area of energy harvesting wireless communications. In particular, we provide the current state of the art for wireless networks composed of energy harvesting nodes, starting from the information-theoretic performance limits to transmission scheduling policies and resource allocation, medium access and networking issues. The emerging related area of energy transfer for self-sustaining energy harvesting wireless networks is considered in detail covering both energy cooperation aspects and simultaneous energy and information transfer. Various potential models with energy harvesting nodes at different network scales are reviewed as well as models for energy consumption at the nodes.Comment: To appear in the IEEE Journal of Selected Areas in Communications (Special Issue: Wireless Communications Powered by Energy Harvesting and Wireless Energy Transfer

    Two-timescale resource allocation for automated networks in IIoT

    Get PDF
    The rapid technological advances of cellular technologies will revolutionize network automation in industrial internet of things (IIoT). In this paper, we investigate the two-timescale resource allocation problem in IIoT networks with hybrid energy supply, where temporal variations of energy harvesting (EH), electricity price, channel state, and data arrival exhibit different granularity. The formulated problem consists of energy management at a large timescale, as well as rate control, channel selection, and power allocation at a small timescale. To address this challenge, we develop an online solution to guarantee bounded performance deviation with only causal information. Specifically, Lyapunov optimization is leveraged to transform the long-term stochastic optimization problem into a series of short-term deterministic optimization problems. Then, a low-complexity rate control algorithm is developed based on alternating direction method of multipliers (ADMM), which accelerates the convergence speed via the decomposition-coordination approach. Next, the joint channel selection and power allocation problem is transformed into a one-to-many matching problem, and solved by the proposed price-based matching with quota restriction. Finally, the proposed algorithm is verified through simulations under various system configurations

    Power control optimization for large-scale multi-antenna systems

    Get PDF
    Large-scale multi-antenna systems can effectively improve data transmission reliability and throughput for smart grid. However, the massive number of antennas and radio frequency (RF) chains also result in high complexity and energy cost. In this paper, we develop a new performance benchmark named energy economic efficiency for measuring the time-average throughput per energy cost. Then, we investigate how to maximize long-term energy economic efficiency via the joint optimization of communication and energy resource allocation. The formulated joint optimization problem is NP-hard because it not only involves long-term nonlinear optimization objective and constraints, but also involves both integer and continuous optimization variables. Next, we propose an online joint antenna selection and power control algorithm by combining nonlinear fractional programming, Lyapunov optimization, and bisection method. The proposed algorithm can achieve bounded performance deviation from the optimum performance without requiring the prior knowledge of future channel state information (CSI), energy arrival, and electricity price. Finally, a comprehensive theoretical analysis is provided, and the proposed algorithm is verified through simulations under various system configurations

    The Value-of-Information in Matching with Queues

    Full text link
    We consider the problem of \emph{optimal matching with queues} in dynamic systems and investigate the value-of-information. In such systems, the operators match tasks and resources stored in queues, with the objective of maximizing the system utility of the matching reward profile, minus the average matching cost. This problem appears in many practical systems and the main challenges are the no-underflow constraints, and the lack of matching-reward information and system dynamics statistics. We develop two online matching algorithms: Learning-aided Reward optimAl Matching (LRAM\mathtt{LRAM}) and Dual-LRAM\mathtt{LRAM} (DRAM\mathtt{DRAM}) to effectively resolve both challenges. Both algorithms are equipped with a learning module for estimating the matching-reward information, while DRAM\mathtt{DRAM} incorporates an additional module for learning the system dynamics. We show that both algorithms achieve an O(ϵ+δr)O(\epsilon+\delta_r) close-to-optimal utility performance for any ϵ>0\epsilon>0, while DRAM\mathtt{DRAM} achieves a faster convergence speed and a better delay compared to LRAM\mathtt{LRAM}, i.e., O(δz/ϵ+log(1/ϵ)2))O(\delta_{z}/\epsilon + \log(1/\epsilon)^2)) delay and O(δz/ϵ)O(\delta_z/\epsilon) convergence under DRAM\mathtt{DRAM} compared to O(1/ϵ)O(1/\epsilon) delay and convergence under LRAM\mathtt{LRAM} (δr\delta_r and δz\delta_z are maximum estimation errors for reward and system dynamics). Our results reveal that information of different system components can play very different roles in algorithm performance and provide a systematic way for designing joint learning-control algorithms for dynamic systems
    corecore