346 research outputs found

    Efficient Minimization of Decomposable Submodular Functions

    Get PDF
    Many combinatorial problems arising in machine learning can be reduced to the problem of minimizing a submodular function. Submodular functions are a natural discrete analog of convex functions, and can be minimized in strongly polynomial time. Unfortunately, state-of-the-art algorithms for general submodular minimization are intractable for larger problems. In this paper, we introduce a novel subclass of submodular minimization problems that we call decomposable. Decomposable submodular functions are those that can be represented as sums of concave functions applied to modular functions. We develop an algorithm, SLG, that can efficiently minimize decomposable submodular functions with tens of thousands of variables. Our algorithm exploits recent results in smoothed convex minimization. We apply SLG to synthetic benchmarks and a joint classification-and-segmentation task, and show that it outperforms the state-of-the-art general purpose submodular minimization algorithms by several orders of magnitude.Comment: Expanded version of paper for Neural Information Processing Systems 201

    Minimizing a sum of submodular functions

    Get PDF
    We consider the problem of minimizing a function represented as a sum of submodular terms. We assume each term allows an efficient computation of {\em exchange capacities}. This holds, for example, for terms depending on a small number of variables, or for certain cardinality-dependent terms. A naive application of submodular minimization algorithms would not exploit the existence of specialized exchange capacity subroutines for individual terms. To overcome this, we cast the problem as a {\em submodular flow} (SF) problem in an auxiliary graph, and show that applying most existing SF algorithms would rely only on these subroutines. We then explore in more detail Iwata's capacity scaling approach for submodular flows (Math. Programming, 76(2):299--308, 1997). In particular, we show how to improve its complexity in the case when the function contains cardinality-dependent terms.Comment: accepted to "Discrete Applied Mathematics
    • …
    corecore