1 research outputs found

    Minimizing DNF Formulas and AC 0 Circuits Given a Truth Table

    Get PDF
    For circuit classes R, the fundamental computational problem Min-R asks for the minimum R-size of a Boolean function presented as a truth table. Prominent examples of this problem include Min-DNF, which asks whether a given Boolean function presented as a truth table has a k-term DNF, and Min-Circuit (also called MCSP), which asks whether a Boolean function presented as a truth table has a size k Boolean circuit. We present a new reduction proving that Min-DNF is NP-complete. It is significantly simpler than the known reduction of Masek [31], which is from Circuit-SAT. We then give a more complex reduction, yielding the result that Min-DNF cannot be approximated to within a factor smaller than logN γ, for some constant γ 0, assuming that NP is not contained in quasipolynomial time. The standard greedy algorithm for Set Cover is often used in practice to approximate Min-DNF. The question of whether Min-DNF can be approximated to within a factor of o logN remains open, but we construct an instance of Min-DNF on which the solution produced by the greedy algorithm is Ω logN larger than optimal. Finally, we extend known hardness results for Min-TC0 d to obtain new hardness results for Min-AC0 d, under cryptographic assumptions
    corecore