27,281 research outputs found

    Polarimetry at the ILC

    Full text link
    At the ILC, the luminosity-weighted average polarization at the IP needs to be determined at the permille-level. In order to reach this goal, the combined information from the polarimeter and the collision data is required. In this study, a unified approach will be presented, which for the first time combines the cross section measurements with the expected constraints from the polarimeters. Hereby, the statistical and systematical uncertainties are taken into account, including their correlations. This study shows that a fast spin flip frequency is required because it easily reduces the systematic uncertainty, while a non-perfect helicity reversal can be compensated for within the unified approach. The final goal is to provide a realistic estimation of the luminosity-weighted average polarization at the IP to be used in the physic analyses.Comment: 8 pages, conference proceedings LCWS 2016 Morioka Japa

    Illumination strategies for intensity-only imaging

    Full text link
    We propose a new strategy for narrow band, active array imaging of localized scat- terers when only the intensities are recorded and measured at the array. We consider a homogeneous medium so that wave propagation is fully coherent. We show that imaging with intensity-only measurements can be carried out using the time reversal operator of the imaging system, which can be obtained from intensity measurements using an appropriate illumination strategy and the polarization identity. Once the time reversal operator has been obtained, we show that the images can be formed using its singular value decomposition (SVD). We use two SVD-based methods to image the scatterers. The proposed approach is simple and efficient. It does not need prior information about the sought image, and guarantees exact recovery in the noise-free case. Furthermore, it is robust with respect to additive noise. Detailed numerical simulations illustrate the performance of the proposed imaging strategy when only the intensities are captured

    Robust determination of maximally-localized Wannier functions

    Full text link
    We propose an algorithm to determine Maximally Localized Wannier Functions (MLWFs). This algorithm, based on recent theoretical developments, does not require any physical input such as initial guesses for the Wannier functions, unlike popular schemes based on the projection method. We discuss how the projection method can fail on fine grids when the initial guesses are too far from MLWFs. We demonstrate that our algorithm is able to find localized Wannier functions through tests on two-dimensional systems, simplified models of semiconductors, and realistic DFT systems by interfacing with the Wannier90 code. We also test our algorithm on the Haldane and Kane-Mele models to examine how it fails in the presence of topological obstructions

    Anharmonic free energies and phonon dispersions from the stochastic self-consistent harmonic approximation: application to platinum and palladium hydrides

    Full text link
    Harmonic calculations based on density-functional theory are generally the method of choice for the description of phonon spectra of metals and insulators. The inclusion of anharmonic effects is, however, delicate as it relies on perturbation theory requiring a considerable amount of computer time, fast increasing with the cell size. Furthermore, perturbation theory breaks down when the harmonic solution is dynamically unstable or the anharmonic correction of the phonon energies is larger than the harmonic frequencies themselves.We present a stochastic implementation of the self-consistent harmonic approximation valid to treat anharmonicity at any temperature in the non-perturbative regime. The method is based on the minimization of the free energy with respect to a trial density matrix described by an arbitrary harmonic Hamiltonian. The minimization is performed with respect to all the free parameters in the trial harmonic Hamiltonian, namely, equilibrium positions, phonon frequencies and polarization vectors. The gradient of the free energy is calculated following a stochastic procedure. The method can be used to calculate thermodynamic properties, dynamical properties and anharmonic corrections to the Eliashberg function of the electron-phonon coupling. The scaling with the system size is greatly improved with respect to perturbation theory. The validity of the method is demonstrated in the strongly anharmonic palladium and platinum hydrides. In both cases we predict a strong anharmonic correction to the harmonic phonon spectra, far beyond the perturbative limit. In palladium hydrides we calculate thermodynamic properties beyond the quasiharmonic approximation, while in PtH we demonstrate that the high superconducting critical temperatures at 100 GPa predicted in previous calculations based on the harmonic approximation are strongly suppressed when anharmonic effects are included.Comment: 17 pages, 5 figure

    Charge reversal of colloidal particles

    Full text link
    A theory is presented for the effective charge of colloidal particles in suspensions containing multivalent counterions. It is shown that if colloids are sufficiently strongly charged, the number of condensed multivalent counterion can exceed the bare colloidal charge leading to charge reversal. Charge renormalization in suspensions with multivalent counterions depends on a subtle interplay between the solvation energies of the multivalent counterions in the bulk and near the colloidal surface. We find that the effective charge is {\it not} a monotonically decreasing function of the multivalent salt concentration. Furthermore, contrary to the previous theories, it is found that except at very low concentrations, monovalent salt hinders the charge reversal. This conclusion is in agreement with the recent experiments and simulations
    • …
    corecore