944 research outputs found

    Minimax hypothesis testing for curve registration

    Get PDF
    This paper is concerned with the problem of goodness-of-fit for curve registration, and more precisely for the shifted curve model, whose application field reaches from computer vision and road traffic prediction to medicine. We give bounds for the asymptotic minimax separation rate, when the functions in the alternative lie in Sobolev balls and the separation from the null hypothesis is measured by the l2-norm. We use the generalized likelihood ratio to build a nonadaptive procedure depending on a tuning parameter, which we choose in an optimal way according to the smoothness of the ambient space. Then, a Bonferroni procedure is applied to give an adaptive test over a range of Sobolev balls. Both achieve the asymptotic minimax separation rates, up to possible logarithmic factors

    Minimax testing of a composite null hypothesis defined via a quadratic functional in the model of regression

    Get PDF
    We consider the problem of testing a particular type of composite null hypothesis under a nonparametric multivariate regression model. For a given quadratic functional QQ, the null hypothesis states that the regression function ff satisfies the constraint Q[f]=0Q[f]=0, while the alternative corresponds to the functions for which Q[f]Q[f] is bounded away from zero. On the one hand, we provide minimax rates of testing and the exact separation constants, along with a sharp-optimal testing procedure, for diagonal and nonnegative quadratic functionals. We consider smoothness classes of ellipsoidal form and check that our conditions are fulfilled in the particular case of ellipsoids corresponding to anisotropic Sobolev classes. In this case, we present a closed form of the minimax rate and the separation constant. On the other hand, minimax rates for quadratic functionals which are neither positive nor negative makes appear two different regimes: "regular" and "irregular". In the "regular" case, the minimax rate is equal to n1/4n^{-1/4} while in the "irregular" case, the rate depends on the smoothness class and is slower than in the "regular" case. We apply this to the issue of testing the equality of norms of two functions observed in noisy environments

    Landmark-Based Registration of Curves via the Continuous Wavelet Transform

    Get PDF
    This paper is concerned with the problem of the alignment of multiple sets of curves. We analyze two real examples arising from the biomedical area for which we need to test whether there are any statistically significant differences between two subsets of subjects. To synchronize a set of curves, we propose a new nonparametric landmark-based registration method based on the alignment of the structural intensity of the zero-crossings of a wavelet transform. The structural intensity is a multiscale technique recently proposed by Bigot (2003, 2005) which highlights the main features of a signal observed with noise. We conduct a simulation study to compare our landmark-based registration approach with some existing methods for curve alignment. For the two real examples, we compare the registered curves with FANOVA techniques, and a detailed analysis of the warping functions is provided

    A scale-space approach with wavelets to singularity estimation

    Get PDF
    This paper is concerned with the problem of determining the typical features of a curve when it is observed with noise. It has been shown that one can characterize the Lipschitz singularities of a signal by following the propagation across scales of the modulus maxima of its continuous wavelet transform. A nonparametric approach, based on appropriate thresholding of the empirical wavelet coefficients, is proposed to estimate the wavelet maxima of a signal observed with noise at various scales. In order to identify the singularities of the unknown signal, we introduce a new tool, "the structural intensity", that computes the "density" of the location of the modulus maxima of a wavelet representation along various scales. This approach is shown to be an effective technique for detecting the significant singularities of a signal corrupted by noise and for removing spurious estimates. The asymptotic properties of the resulting estimators are studied and illustrated by simulations. An application to a real data set is also proposed

    Statistical inferences for functional data

    Full text link
    With modern technology development, functional data are being observed frequently in many scientific fields. A popular method for analyzing such functional data is ``smoothing first, then estimation.'' That is, statistical inference such as estimation and hypothesis testing about functional data is conducted based on the substitution of the underlying individual functions by their reconstructions obtained by one smoothing technique or another. However, little is known about this substitution effect on functional data analysis. In this paper this problem is investigated when the local polynomial kernel (LPK) smoothing technique is used for individual function reconstructions. We find that under some mild conditions, the substitution effect can be ignored asymptotically. Based on this, we construct LPK reconstruction-based estimators for the mean, covariance and noise variance functions of a functional data set and derive their asymptotics. We also propose a GCV rule for selecting good bandwidths for the LPK reconstructions. When the mean function also depends on some time-independent covariates, we consider a functional linear model where the mean function is linearly related to the covariates but the covariate effects are functions of time. The LPK reconstruction-based estimators for the covariate effects and the covariance function are also constructed and their asymptotics are derived. Moreover, we propose a L2L^2-norm-based global test statistic for a general hypothesis testing problem about the covariate effects and derive its asymptotic random expression. The effect of the bandwidths selected by the proposed GCV rule on the accuracy of the LPK reconstructions and the mean function estimator is investigated via a simulation study. The proposed methodologies are illustrated via an application to a real functional data set collected in climatology.Comment: Published at http://dx.doi.org/10.1214/009053606000001505 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore