2 research outputs found

    Minimal walsh structure and ordinal linkage of monotonicity-invariant function classes on bit strings.

    Get PDF
    Problem structure, or linkage, refers to the interaction between variables in a black-box fitness function. Discovering structure is a feature of a range of algorithms, including estimation of distribution algorithms (EDAs) and perturbation methods (PMs). The complexity of structure has traditionally been used as a broad measure of problem difficulty, as the computational complexity relates directly to the complexity of structure. The EDA literature describes necessary and unnecessary interactions in terms of the relationship between problem structure and the structure of probabilistic graphical models discovered by the EDA. In this paper we introduce a classification of problems based on monotonicity invariance. We observe that the minimal problem structures for these classes often reveal that significant proportions of detected structures are unnecessary. We perform a complete classification of all functions on 3 bits. We consider nonmonotonicity linkage discovery using perturbation methods and derive a concept of directed ordinal linkage associated to optimization schedules. The resulting refined classification factored out by relabeling, shows a hierarchy of nine directed ordinal linkage classes for all 3-bit functions. We show that this classification allows precise analysis of computational complexity and parallelizability and conclude with a number of suggestions for future work

    The role of Walsh structure and ordinal linkage in the optimisation of pseudo-Boolean functions under monotonicity invariance.

    Get PDF
    Optimisation heuristics rely on implicit or explicit assumptions about the structure of the black-box fitness function they optimise. A review of the literature shows that understanding of structure and linkage is helpful to the design and analysis of heuristics. The aim of this thesis is to investigate the role that problem structure plays in heuristic optimisation. Many heuristics use ordinal operators; which are those that are invariant under monotonic transformations of the fitness function. In this thesis we develop a classification of pseudo-Boolean functions based on rank-invariance. This approach classifies functions which are monotonic transformations of one another as equivalent, and so partitions an infinite set of functions into a finite set of classes. Reasoning about heuristics composed of ordinal operators is, by construction, invariant over these classes. We perform a complete analysis of 2-bit and 3-bit pseudo-Boolean functions. We use Walsh analysis to define concepts of necessary, unnecessary, and conditionally necessary interactions, and of Walsh families. This helps to make precise some existing ideas in the literature such as benign interactions. Many algorithms are invariant under the classes we define, which allows us to examine the difficulty of pseudo-Boolean functions in terms of function classes. We analyse a range of ordinal selection operators for an EDA. Using a concept of directed ordinal linkage, we define precedence networks and precedence profiles to represent key algorithmic steps and their interdependency in terms of problem structure. The precedence profiles provide a measure of problem difficulty. This corresponds to problem difficulty and algorithmic steps for optimisation. This work develops insight into the relationship between function structure and problem difficulty for optimisation, which may be used to direct the development of novel algorithms. Concepts of structure are also used to construct easy and hard problems for a hill-climber
    corecore