15 research outputs found

    Posets and Permutations in the duplication-loss model

    Get PDF
    Version courte de "Posets and Permutations in the Duplication-Loss Model: Minimal Permutations with d Descents.", présentée à GASCom'08In this paper, we are interested in the combinatorial analysis of the whole genome duplication - random loss model of genome rearrangement initiated in a paper of Chaudhuri, Chen, Mihaescu, and Rao in SODA 2006 and continued by Bouvel and Rossin in 2007. In this model, genomes composed of n genes are modeled by permutations of the set of integers [1..n], that can evolve through duplication-loss steps. It was previously shown that the class of permutations obtained in this model after a given number p of steps is a class of pattern-avoiding permutations of finite basis. The excluded patterns were implicitly described as the minimal permutations with d=2^p descents, minimal being intended in the sense of the pattern-involvement relation on permutations. Here, we give a local and simpler characterization of the set B_d of minimal permutations with d descents. We also provide a more detailed analysis - characterization, bijection and enumeration - of a particular subset of B_d, namely the patterns in B_d of size 2d

    Minimal Permutations and 2-Regular Skew Tableaux

    Get PDF
    Bouvel and Pergola introduced the notion of minimal permutations in the study of the whole genome duplication-random loss model for genome rearrangements. Let Fd(n)\mathcal{F}_d(n) denote the set of minimal permutations of length nn with dd descents, and let fd(n)=∣Fd(n)∣f_d(n)= |\mathcal{F}_d(n)|. They derived that fn−2(n)=2n−(n−1)n−2f_{n-2}(n)=2^{n}-(n-1)n-2 and fn(2n)=Cnf_n(2n)=C_n, where CnC_n is the nn-th Catalan number. Mansour and Yan proved that fn+1(2n+1)=2n−2nCn+1f_{n+1}(2n+1)=2^{n-2}nC_{n+1}. In this paper, we consider the problem of counting minimal permutations in Fd(n)\mathcal{F}_d(n) with a prescribed set of ascents. We show that such structures are in one-to-one correspondence with a class of skew Young tableaux, which we call 22-regular skew tableaux. Using the determinantal formula for the number of skew Young tableaux of a given shape, we find an explicit formula for fn−3(n)f_{n-3}(n). Furthermore, by using the Knuth equivalence, we give a combinatorial interpretation of a formula for a refinement of the number fn+1(2n+1)f_{n+1}(2n+1).Comment: 19 page

    On the enumeration of d-minimal permutations

    Get PDF
    International audienceWe suggest an approach for the enumeration of minimal permutations having d descents which uses skew Young tableaux. We succeed in finding a general expression for the number of such permutations in terms of (several) sums of determinants. We then generalize the class of skew Young tableaux under consideration; this allows in particular to discover some presumably new results concerning Eulerian numbers

    A variant of the tandem duplication - random loss model of genome rearrangement

    Get PDF
    In Soda'06, Chaudhuri, Chen, Mihaescu and Rao study algorithmic properties of the tandem duplication - random loss model of genome rearrangement, well-known in evolutionary biology. In their model, the cost of one step of duplication-loss of width k is αk\alpha^k for α=1\alpha =1 or α>=2\alpha >=2 . In this paper, we study a variant of this model, where the cost of one step of width kk is 1 if kKk K, for any value of the parameter KinNK in N. We first show that permutations obtained after pp steps of width KK define classes of pattern-avoiding permutations. We also compute the numbers of duplication-loss steps of width KK necessary and sufficient to obtain any permutation of SnS_n, in the worst case and on average. In this second part, we may also consider the case K=K(n)K=K(n), a function of the size nn of the permutation on which the duplication-loss operations are performed
    corecore