14,701 research outputs found

    Point configurations that are asymmetric yet balanced

    Get PDF
    A configuration of particles confined to a sphere is balanced if it is in equilibrium under all force laws (that act between pairs of points with strength given by a fixed function of distance). It is straightforward to show that every sufficiently symmetrical configuration is balanced, but the converse is far from obvious. In 1957 Leech completely classified the balanced configurations in R^3, and his classification is equivalent to the converse for R^3. In this paper we disprove the converse in high dimensions. We construct several counterexamples, including one with trivial symmetry group.Comment: 10 page

    Point configurations that are asymmetric yet balanced

    Get PDF
    A configuration of particles confined to a sphere is balanced if it is in equilibrium under all force laws (that act between pairs of points with strength given by a fixed function of distance). It is straightforward to show that every sufficiently symmetrical configuration is balanced, but the converse is far from obvious. In 1957 Leech completely classified the balanced configurations in R^3, and his classification is equivalent to the converse for R^3. In this paper we disprove the converse in high dimensions. We construct several counterexamples, including one with trivial symmetry group.Comment: 10 page

    An asymptotic existence result on compressed sensing matrices

    Get PDF
    For any rational number hh and all sufficiently large nn we give a deterministic construction for an n×hnn\times \lfloor hn\rfloor compressed sensing matrix with (1,t)(\ell_1,t)-recoverability where t=O(n)t=O(\sqrt{n}). Our method uses pairwise balanced designs and complex Hadamard matrices in the construction of ϵ\epsilon-equiangular frames, which we introduce as a generalisation of equiangular tight frames. The method is general and produces good compressed sensing matrices from any appropriately chosen pairwise balanced design. The (1,t)(\ell_1,t)-recoverability performance is specified as a simple function of the parameters of the design. To obtain our asymptotic existence result we prove new results on the existence of pairwise balanced designs in which the numbers of blocks of each size are specified.Comment: 15 pages, no figures. Minor improvements and updates in February 201
    corecore