17 research outputs found

    Miniaturized force-indentation depth sensor for tissue abnormality identification during laparoscopic surgery

    Get PDF
    Proceedings of: 2010 IEEE International Conference on Robotics and Automation (ICRA'10), May 3-8, 2010, Anchorage (Alaska, USA)This paper presents a novel miniaturized force-indentation depth (FID) sensor designed to conduct indentation on soft tissue during minimally invasive surgery. It can intra-operatively aid the surgeon to rapidly identify the tissue abnormalities within the tissue. The FID sensor can measure the indentation depth of a semi-spherical indenter and the tissue reaction force simultaneously. It make use of with fiber optical fiber sensing method measure indentation depth and force and is small enough to fit through a standard trocar port with a diameter of 11 mm. The created FID sensor was calibrated and tested on silicone block simulating soft tissue. The results show that the sensor can measure the indentation depth accurately and also the orientation of the sensor with respect to the tissue surface whilst performing indentation.European Community's Seventh Framework Progra

    Haptic assessment of tissue stiffness in locating and identifying gynaecological cancer in human tissue

    Get PDF
    Gynaecological surgeons are not able to gather adequate tissue feedback during minimal access surgery for cancer treatment. This can result in failure to locate tumour boundaries and to ensure these are completely resected within tumour-free resection margins. Surgeons achieve significantly better surgical and oncological outcomes if they can identify the precise location of a gynaecological tumour. Indeed, the true nature of tumour, whether benign or cancerous, is often not known prior to surgery. If more details were available in relation to the characteristics that differentiate gynaecological cancer in tumours, this would enable more accurate diagnosis and help in the planning of surgery. HYPOTHESIS: Haptic technology has the potential to enhance the surgeon’s degree of perception during minimal access surgery. Alteration in tissue stiffness in gynaecological tumours, thought to be associated with the accelerated multiplication of cancer cells, should allow their location to be identified and help in determining the likelihood of malignancy. METHOD: Setting: (i) Guy's & St Thomas' Hospital (ii) Dept of Informatics (King's College London).Permission from the National Research Ethics Committee and Research & Development (R&D) approval were sought from the National Health Service. The Phantom Omni, capable of 3D motion tracking, attached to a nano-17 force sensor, was used to capture real-time position data and force data. Uniaxial indentation palpation behaviour was used. The indentation depth was calculated using the displacement of the probe from the surface to the deepest point for each contact. The tissue stiffness (TS) was then calculated.The haptic probe was tested first on silicone models with embedded nodules mimicking tumour(s). This was followed by assessing TS ex-vivo using a haptic probe on fresh human gynaecological organs that had been removed in surgery. Tissue stiffness maps were generated in real time using the haptic device by converting stiffness values into RGB values. Surgeons also manually palpated and recorded the site of the tumour. Histology was used as the gold standard for location and cancer diagnosis. Manual palpation and haptic data were compared for accuracy on tumour location. The tissue stiffness calculated by the haptic probe was compared in cancer and control specimens. Several data analysis techniques were applied to derive results.CONTRIBUTIONS: Haptic indentation probe was tested for the first time on fresh human gynaecological organs to locate cancer in a clinical setting. We are the first one to evaluate the accuracy of cancer diagnosis in human gynaecological organs with a force sensing haptic indentation probe measuring tissue stiffness

    Pseudo-Haptics for Rigid Tool/Soft Object Interaction Feedback in Virtual Environments

    Get PDF
    This paper proposes a novel pseudo-haptics soft object stiffness simulation technique which is a marked improvement to currently used simulation methods and an effective low-cost alternative to expensive 3-DOF haptic devices. Soft object stiffness simulation is achieved by maneuvering an indenter avatar over the surface of a virtual soft object by means of an input device, such as a mouse, a joystick, or a touch-sensitive tablet. The alterations to the indenter avatar behavior produced by the proposed technique create for the user the illusion of interaction with a hard inclusion embedded in the soft object. The proposed pseudo-haptics technique is validated with a series of experiments conducted by employing three types of 2-DOF force-sensitive haptic surfaces, including a touchpad, a tablet with an S-pen input, and a tablet with a bare finger input. It is found that both the sensitivity and the positive predictive value of hard inclusion detection can be significantly improved by 33.3% and 13.9% respectively by employing tablet computers. Using tablet computers could produce results comparable to direct hand touch in detecting hard inclusions in a soft object. The experimental results presented here confirm the potential of the proposed technique for conveying haptic information in rigid tool / soft object interaction in virtual environments

    ARTICLE IN PRESS G Model

    Get PDF
    a b s t r a c t For surgeons performing open procedures, the sense of touch is a valuable tool to directly access buried structures and organs, to identify their margins, detect tumors, and prevent undesired cuts. Minimally invasive surgical procedures provide great benefits for patients; however, they hinder the surgeon's ability to directly manipulate the tissue. In our previous work, we developed a Wireless Palpation Probe (WPP) to restore tissue palpation in Minimally Invasive Surgery (MIS) by creating a real-time stiffness distribution map of the target tissue. The WPP takes advantage of a field-based magnetic localization algorithm to measure its position, orientation, and tissue indentation depth, in addition to a barometric sensor measuring indentation tissue pressure. However, deformations of both the tissue and the silicone material used to cover the pressure sensors introduce detrimental nonlinearities in sensor measurements. In this work, we calibrated and characterized different diameter WPP heads with a new design allowing exchangeability and disposability of the probe head. Benchtop trials showed that this method can effectively reduce error in sensor pressure measurements up to 5% with respect to the reference sensor. Furthermore, we studied the effect of the head diameter on the device's spatial resolution in detecting tumor simulators embedded into silicone phantoms. Overall, the results showed a tumor detection rate over 90%, independent of the head diameter, when an indentation depth of 5 mm is applied on the tissue simulator

    Design, Modeling, Fabrication and Testing of a Piezoresistive-Based Tactile Sensor for Minimally Invasive Surgery Applications

    Get PDF
    Minimally invasive surgery (MIS) has become a preferred method for surgeons for the last two decades, thanks to its crucial advantages over classical open surgeries. Although MIS has some advantages, it has a few drawbacks. Since MIS technology includes performing surgery through small incisions using long slender tools, one of the main drawbacks of MIS becomes the loss of direct contact with the patient’s body in the site of operation. Therefore, the surgeon loses the sense of touch during the operation which is one of the important tools for safe manipulation of tissue and also to determine the hardness of contact tissue in order to investigate its health condition. This Thesis presents a novel piezoresistive-based multifunctional tactile sensor that is able to measure the contact force and the relative hardness of the contact object or tissue at the same time. A prototype of the designed sensor has been simulated, analyzed, fabricated, and tested both numerically and experimentally. The experiments have been performed on hyperelastic materials, which are silicone rubber samples with different hardness values that resemble different biological tissues. The ability of the sensor to measure the contact force and relative hardness of the contact objects is tested with several experiments. A finite element (FE) model has been built in COMSOL Multiphysics (v3.4) environment to simulate both the mechanical behavior of the silicone rubber samples, and the interaction between the sensor and the silicone rubbers. Both numerical and experimental analysis proved the capability of the sensor to measure the applied force and distinguish among different silicone-rubber samples. The sensor has the potential for integration with commercially available endoscopic grasper

    OPTICAL-BASED TACTILE SENSORS FOR MINIMALLY INVASIVE SURGERIES: DESIGN, MODELING, FABRICATION AND VALIDATION

    Get PDF
    Loss of tactile perception is the most challenging limitation of state-of-the-art technology for minimally invasive surgery. In conventional open surgery, surgeons rely on their tactile sensation to perceive the tissue type, anatomical landmarks, and instrument-tissue interaction in the patient’s body. To compensate for the loss of tactile feedback in minimally invasive surgery, researchers have proposed various tactile sensors based on electrical and optical sensing principles. Optical-based sensors have shown the most compatibility with the functional and physical requirements of minimally invasive surgery applications. However, the proposed tactile sensors in the literature are typically bulky, expensive, cumbersome to integrate with surgical instruments and show nonlinearity in interaction with biological tissues. In this doctoral study, different optical tactile sensing principles were proposed, modeled, validated and various tactile sensors were fabricated, and experimentally studied to address the limitations of the state-of-the-art. The present thesis first provides a critical review of the proposed tactile sensors in the literature with a comparison of their advantages and limitations for surgical applications. Afterward, it compiles the results of the design, modeling, and validation of a hybrid optical-piezoresistive sensor, a distributed Bragg reflecting sensor, and two sensors based on the variable bending radius light intensity modulation principle. The performance of each sensor was verified experimentally for the required criteria of accuracy, resolution, range, repeatability, and hysteresis. Also, a novel image-based intensity estimation technique was proposed and its applicability for being used in surgical applications was verified experimentally. In the end, concluding remarks and recommendations for future studies are provided
    corecore