1,988 research outputs found

    Active Thermal Architecture: Design and Status

    Get PDF
    This paper presents a design update for the Active Thermal Architecture (ATA) project. ATA is a joint effort between Utah State University and the Jet Propulsion Laboratory, funded by the NASA Small Spacecraft Technology Program (SSTP). The objective of the ATA is to develop advanced active thermal control technologies for Small Satellites in support of cryogenic electro-optical instrumentation. Specifically, the development of a 1U ground-based prototype of a single-phase, two-stage mechanically pumped fluid loop based active thermal control subsystem targeted at 6U CubeSat platforms and above. The first stage utilizes a micro-pump to circulate working fluid between an integrated heat exchanger and a deployed tracking radiator. This heat exchange provides general thermal management to the ATA system and CubeSat. The second stage consists of a miniature cryocooler, which directly provides cryogenic cooling to payload instrumentation. Ultrasonic Additive Manufacturing techniques simplify and miniaturize the ATA system by embedding the flow channels directly into the heat exchanger and the external radiator. The ATA system features dual rotary union fluid joints that, along with a micro-motor, allow for a two-axis deployment of the radiator and solar tracking. The ATA also includes a passive vibration control system which, isolates the optical payload from the jitter induced by the active systems. ATA has been fully prototyped and tested for radiator deployment and tracking. ATA is a second phase effort with the integrated pumped fluid loop and radiator previously demonstrated by the Active CryoCubeSat SSTP. This technology is suited for the thermal control of any high-powered spacecraft subsystem or the general thermal maintenance of a CubeSat’s environment. This project hopes to maturate all relevant technologies to a TRL of 5 or

    Index to NASA Tech Briefs, 1975

    Get PDF
    This index contains abstracts and four indexes--subject, personal author, originating Center, and Tech Brief number--for 1975 Tech Briefs

    Micro-manufacturing : research, technology outcomes and development issues

    Get PDF
    Besides continuing effort in developing MEMS-based manufacturing techniques, latest effort in Micro-manufacturing is also in Non-MEMS-based manufacturing. Research and technological development (RTD) in this field is encouraged by the increased demand on micro-components as well as promised development in the scaling down of the traditional macro-manufacturing processes for micro-length-scale manufacturing. This paper highlights some EU funded research activities in micro/nano-manufacturing, and gives examples of the latest development in micro-manufacturing methods/techniques, process chains, hybrid-processes, manufacturing equipment and supporting technologies/device, etc., which is followed by a summary of the achievements of the EU MASMICRO project. Finally, concluding remarks are given, which raise several issues concerning further development in micro-manufacturing

    The design and characterisation of miniature robotics for astronomical instruments

    Get PDF
    Micro robotics has the potential to improve the efficiency and reduce cost of future multi-object instruments for astronomy. This thesis reports on the development and evolution of a micro autonomous pick-off mirror called the Micro Autonomous Positioning System (MAPS) that can be used in a multi-object spectrograph. The design of these micro-autonomous pick-off mirrors is novel as they are capable of high precision positioning using electromagnetic propulsion through utilising non-conventional components and techniques. These devices are self-driven robotic units, which with the help of an external control system are capable of positioning themselves on an instruments focal plane to within 24 ÎŒm. This is different from other high precision micro robotics as they normally use piezoelectric actuators for propulsion. Micro robots have been developed that use electromagnetic motors, however they are not used for high precision applications. Although there is a plethora of literature covering design, functionality and capability of precision micro autonomous systems, there is limited research on characterisation methods for their use in astronomical applications. This work contributes not only to the science supporting the design of a micro-autonomous pick-off mirror but also presents a framework for characterising such miniature mechanisms. The majority of instruments are presented with a curved focal plane. Therefore, to ensure that the pick-off mirrors are aligned properly with the receiving optics, either the pick-off mirror needs to be tipped or the receiving optics repositioned. Currently this function is implemented in the beam steering mirror (i.e. the receiving optics). The travel range required by the beam steering mirror is relatively large, and as such, it is more difficult to achieve the positional accuracy and stability. By incorporating this functionality in the pick-off mirror, the instrument can be optimised in terms of size, accuracy and stability. A unique self-adjusting mirror (SAM) is thus proposed as a solution and detailed. As a proof-of-concepts both MAPS and SAM usability in multi-object spectrographs was evaluated and validated. The results indicate their potential to meet the requirements of astronomical instruments and reduce both the size and cost

    Design study of an earthquake rescue robot

    Get PDF
    This thesis describes the design of a brush robot for earthquake rescue and for traversing pipes with varied cross sectional shape. Earthquake rescue is a very dangerous, difficult and challenging task, in which emergency services rescue people who are trapped in man-made structures, such as collapsed buildings after an earthquake. The building collapse may have been caused by natural or man-made events. This technology is also applicable to tunnel collapse and land slips. The focus of this work is finding the location of victims and provision of primary life support and communications. To illustrate the concept of the robot, the thesis first discusses the current development of rescue robots and pipe robots. Then the thesis focuses on the description of a brush based pipe robot, developed by the University of Durham, which would be used as the basis of an earthquake rescue robot. The concept of the robot was illustrated and compared with other current rescue robots and pipe robots. After outlining the advantages of this robot concept, a robot body shape change theory was proposed and theoretical simulations were used to verily the practicality of the robot shape change theory. The thesis also illustrates the design of the working principle and design of a robot sensor, which was subsequently used in the robot shape change experiments. The robot body shape change experiments and the experimental results are described and discussed. The experimental results illustrate the robot concept and support the robot body shape change theory. Chapter 6 focuses on the brush unit traction investigation, bristle theory and mathematical model. Furthermore, the bristle theory and mathematical model were used to explain the variation of traction force in the traction experiments

    Acoustic Sensing and Ultrasonic Drug Delivery in Multimodal Theranostic Capsule Endoscopy

    Get PDF
    Video capsule endoscopy (VCE) is now a clinically accepted diagnostic modality in which miniaturized technology, an on-board power supply and wireless telemetry stand as technological foundations for other capsule endoscopy (CE) devices. However, VCE does not provide therapeutic functionality, and research towards therapeutic CE (TCE) has been limited. In this paper, a route towards viable TCE is proposed, based on multiple CE devices including important acoustic sensing and drug delivery components. In this approach, an initial multimodal diagnostic device with high-frequency quantitative microultrasound that complements video imaging allows surface and subsurface visualization and computer-assisted diagnosis. Using focused ultrasound (US) to mark sites of pathology with exogenous fluorescent agents permits follow-up with another device to provide therapy. This is based on an US-mediated targeted drug delivery system with fluorescence imaging guidance. An additional device may then be utilized for treatment verification and monitoring, exploiting the minimally invasive nature of CE. While such a theranostic patient pathway for gastrointestinal treatment is presently incomplete, the description in this paper of previous research and work under way to realize further components for the proposed pathway suggests it is feasible and provides a framework around which to structure further work

    Ultrasonic sensor platforms for non-destructive evaluation

    Get PDF
    Robotic vehicles are receiving increasing attention for use in Non-Destructive Evaluation (NDE), due to their attractiveness in terms of cost, safety and their accessibility to areas where manual inspection is not practical. A reconfigurable Lamb wave scanner, using autonomous robotic platforms is presented. The scanner is built from a fleet of wireless miniature robotic vehicles, each with a non-contact ultrasonic payload capable of generating the A0 Lamb wave mode in plate specimens. An embedded Kalman filter gives the robots a positional accuracy of 10mm. A computer simulator, to facilitate the design and assessment of the reconfigurable scanner, is also presented. Transducer behaviour has been simulated using a Linear Systems approximation (LS), with wave propagation in the structure modelled using the Local Interaction Simulation Approach (LISA). Integration of the LS and LISA approaches were validated for use in Lamb wave scanning by comparison with both analytical techniques and more computationally intensive commercial finite element/diference codes. Starting with fundamental dispersion data, the work goes on to describe the simulation of wave propagation and the subsequent interaction with artificial defects and plate boundaries. The computer simulator was used to evaluate several imaging techniques, including local inspection of the area under the robot and an extended method that emits an ultrasonic wave and listens for echos (B-Scan). These algorithms were implemented in the robotic platform and experimental results are presented. The Synthetic Aperture Focusing Technique (SAFT) was evaluated as a means of improving the fidelity of B-Scan data. It was found that a SAFT is only effective for transducers with reasonably wide beam divergence, necessitating small transducers with a width of approximately 5mm. Finally, an algorithm for robot localisation relative to plate sections was proposed and experimentally validated

    The Active CryoCubeSat Technology: Active Thermal Control for Small Satellites

    Get PDF
    Modern CubeSats and Small Satellites have advanced in capability to tackle science and technology missions that would usually be reserved for more traditional, large satellites. However, this rapid growth in capability is only possible through the fast-to-production, low-cost, and advanced technology approach used by modern small satellite engineers. Advanced technologies in power generation, energy storage, and high-power density electronics have naturally led to a thermal bottleneck, where CubeSats and Small Satellites can generate more power than they can easily reject. The Active CryoCubeSat (ACCS) is an advanced active thermal control technology (ATC) for Small Satellites and CubeSats, which hopes to help solve this thermal problem. The ACCS technology is based on a two-stage design. An integrated miniature cryocooler forms the first stage, and a single-phase mechanically pumped fluid loop heat exchanger the second. The ACCS leverages advanced 3D manufacturing techniques to integrate the ATC directly into the satellite structure, which helps to improve the performance while simultaneously miniaturizing and simplifying the system. The ACCS system can easily be scaled to mission requirements and can control zonal temperature, bulk thermal rejection, and dynamic heat transfer within a satellite structure. The integrated cryocooler supports cryogenic science payloads such as advanced LWIR electro-optical detectors. The ACCS hopes to enable future advanced CubeSat and Small Satellite missions in earth science, heliophysics, and deep space operations. This dissertation will detail the design, development, and testing of the ACCS system technology

    Design of an Autonomous Hovering Miniature Air Vehicle as a Flying Research Platform

    Get PDF
    This thesis, by developing a Miniature Aerial Vehicle (MAV) hovering platform, presents a practical solution to allow researchers and students to implement their theoretical methods for guidance and navigation in the real world. The thesis is not concerned with the development of guidance and navigation algorithms, nor is it concerned with the development of external sensors. There have been some recent advances in guidance and navigation towards developing algorithms and simple sensors for MAVs. The task of developing a platform to test such advancements is the subject of this thesis. It is considered a difficult and time consuming process due to the complexities of autonomous flight control and the strict size, weight and computational requirements of this type of system. It would be highly beneficial to be able to buy a platform specifically designed for this task that already possesses autonomous hovering capability and the expansion connectivity for interfacing your own custom developed sensors and algorithms. Many biological and computer scientists would jump at the opportunity to maximize their research by real world implementation. The development of such a system is not a trivial task. It requires a great deal of understanding in a broad range of fields including; Aeronautical, Microelectronic, Mechanical, Computer and Embedded Software Engineering in order to create a successful prototype. The challenge of this thesis was to design a research platform to enable easy implementation of external sensors and guidance algorithms, in a real world environment for research and education. The system is designed so it could be used for a broad range of testing experiments. After extensive research in current MAV and avionics design it became obvious in several areas the best available products were not sufficient to meet the needs of the proposed platform. Therefore it was necessary to custom design and build; sensors, a data acquisition system and a servo controller. The latter two products are available for sale by Jimonics (www.jimonics.com). It was then necessary to develop a complete flight control system with integrated sensors, processor and wireless communications network which is called ‘The MicroBrain’. ‘The MicroBrain’ board measures only 45mm x 35mm x 11mm and weighs ~11 grams. The coaxial contra-rotating MAV platform design provides a high level of mechanical stability to help minimise the control system complexity. The platform was highly modified from a commercially available remotely controlled helicopter. The system incorporates a novel collision protection system that was designed to also double as a mounting place for external sensors around its perimeter. The platform equipped with ‘The MicroBrain’ is capable of fully autonomous hover. This provides a great base for testing guidance and navigational sensors and algorithms by decoupling the difficult task of platform design and low-level stability control. By developing a platform with these capabilities the researcher can now focus on the guidance and navigation task, as the difficulties in developing a custom platform have been taken care of. This therefore promotes a faster evolution of guidance and navigational control algorithms for MAVs
    • 

    corecore