105,359 research outputs found

    From Biological to Synthetic Neurorobotics Approaches to Understanding the Structure Essential to Consciousness (Part 3)

    Get PDF
    This third paper locates the synthetic neurorobotics research reviewed in the second paper in terms of themes introduced in the first paper. It begins with biological non-reductionism as understood by Searle. It emphasizes the role of synthetic neurorobotics studies in accessing the dynamic structure essential to consciousness with a focus on system criticality and self, develops a distinction between simulated and formal consciousness based on this emphasis, reviews Tani and colleagues' work in light of this distinction, and ends by forecasting the increasing importance of synthetic neurorobotics studies for cognitive science and philosophy of mind going forward, finally in regards to most- and myth-consciousness

    On the possible Computational Power of the Human Mind

    Full text link
    The aim of this paper is to address the question: Can an artificial neural network (ANN) model be used as a possible characterization of the power of the human mind? We will discuss what might be the relationship between such a model and its natural counterpart. A possible characterization of the different power capabilities of the mind is suggested in terms of the information contained (in its computational complexity) or achievable by it. Such characterization takes advantage of recent results based on natural neural networks (NNN) and the computational power of arbitrary artificial neural networks (ANN). The possible acceptance of neural networks as the model of the human mind's operation makes the aforementioned quite relevant.Comment: Complexity, Science and Society Conference, 2005, University of Liverpool, UK. 23 page

    Formulating Consciousness: A Comparative Analysis of Searle’s and Dennett’s Theory of Consciousness

    Get PDF
    This research will argue about which theory of mind between Searle’s and Dennett’s can better explain human consciousness. Initially, distinctions between dualism and materialism will be discussed ranging from substance dualism, property dualism, physicalism, and functionalism. In this part, the main issue that is tackled in various theories of mind is revealed. It is the missing connection between input stimulus (neuronal reactions) and behavioral disposition: consciousness. Then, the discussion will be more specific on Searle’s biological naturalism and Dennett’s multiple drafts model as the two attempted to answer the issue. The differences between them will be highlighted and will be analyzed according to their relation to their roots: dualism and materialism. The two theories will be examined on how each answer the questions on consciousness

    Digital Theology: Is the Resurrection Virtual?

    Get PDF
    Many recent writers have developed a rich system of theological concepts inspired by computers. This is digital theology. Digital theology shares many elements of its eschatology with Christian post-millenarianism. It promises a utopian perfection via technological progress. Modifying Christian soteriology, digital theology makes reference to four types of immortality. I look critically at each type. The first involves transferring our minds from our natural bodies to superior computerized bodies. The second and third types involve bringing into being a previously living person, or person who has never existed, within an artificial digital environment. The fourth involves promotion of our lives into some higher level computational reality

    Infinitely Complex Machines

    Get PDF
    Infinite machines (IMs) can do supertasks. A supertask is an infinite series of operations done in some finite time. Whether or not our universe contains any IMs, they are worthy of study as upper bounds on finite machines. We introduce IMs and describe some of their physical and psychological aspects. An accelerating Turing machine (an ATM) is a Turing machine that performs every next operation twice as fast. It can carry out infinitely many operations in finite time. Many ATMs can be connected together to form networks of infinitely powerful agents. A network of ATMs can also be thought of as the control system for an infinitely complex robot. We describe a robot with a dense network of ATMs for its retinas, its brain, and its motor controllers. Such a robot can perform psychological supertasks - it can perceive infinitely detailed objects in all their detail; it can formulate infinite plans; it can make infinitely precise movements. An endless hierarchy of IMs might realize a deep notion of intelligent computing everywhere

    A Case for Machine Ethics in Modeling Human-Level Intelligent Agents

    Get PDF
    This paper focuses on the research field of machine ethics and how it relates to a technological singularity—a hypothesized, futuristic event where artificial machines will have greater-than-human-level intelligence. One problem related to the singularity centers on the issue of whether human values and norms would survive such an event. To somehow ensure this, a number of artificial intelligence researchers have opted to focus on the development of artificial moral agents, which refers to machines capable of moral reasoning, judgment, and decision-making. To date, different frameworks on how to arrive at these agents have been put forward. However, there seems to be no hard consensus as to which framework would likely yield a positive result. With the body of work that they have contributed in the study of moral agency, philosophers may contribute to the growing literature on artificial moral agency. While doing so, they could also think about how the said concept could affect other important philosophical concepts

    Non-classical computing: feasible versus infeasible

    Get PDF
    Physics sets certain limits on what is and is not computable. These limits are very far from having been reached by current technologies. Whilst proposals for hypercomputation are almost certainly infeasible, there are a number of non classical approaches that do hold considerable promise. There are a range of possible architectures that could be implemented on silicon that are distinctly different from the von Neumann model. Beyond this, quantum simulators, which are the quantum equivalent of analogue computers, may be constructable in the near future
    • 

    corecore