5 research outputs found

    Verification and Synthesis of Robust Control Barrier Functions: Multilevel Polynomial Optimization and Semidefinite Relaxation

    Full text link
    We study the problem of verification and synthesis of robust control barrier functions (CBF) for control-affine polynomial systems with bounded additive uncertainty and convex polynomial constraints on the control. We first formulate robust CBF verification and synthesis as multilevel polynomial optimization problems (POP), where verification optimizes -- in three levels -- the uncertainty, control, and state, while synthesis additionally optimizes the parameter of a chosen parametric CBF candidate. We then show that, by invoking the KKT conditions of the inner optimizations over uncertainty and control, the verification problem can be simplified as a single-level POP and the synthesis problem reduces to a min-max POP. This reduction leads to multilevel semidefinite relaxations. For the verification problem, we apply Lasserre's hierarchy of moment relaxations. For the synthesis problem, we draw connections to existing relaxation techniques for robust min-max POP, which first use sum-of-squares programming to find increasingly tight polynomial lower bounds to the unknown value function of the verification POP, and then call Lasserre's hierarchy again to maximize the lower bounds. Both semidefinite relaxations guarantee asymptotic global convergence to optimality. We provide an in-depth study of our framework on the controlled Van der Pol Oscillator, both with and without additive uncertainty.Comment: Accepted to IEEE Conference on Decision and Control (CDC) 202

    Utopia point method based robust vector polynomial optimization scheme

    Full text link
    In this paper, we focus on a class of robust vector polynomial optimization problems (RVPOP in short) without any convex assumptions. By combining/improving the utopia point method (a nonlinear scalarization) for vector optimization and "joint+marginal" relaxation method for polynomial optimization, we solve the RVPOP successfully. Both theoratical and computational aspects are considered

    A Moment-SOS Hierarchy for Robust Polynomial Matrix Inequality Optimization with SOS-Convexity

    Full text link
    We study a class of polynomial optimization problems with a robust polynomial matrix inequality (PMI) constraint where the uncertainty set itself is defined also by a PMI. These can be viewed as matrix generalizations of semi-infinite polynomial programs, since they involve actually infinitely many PMI constraints in general. Under certain SOS-convexity assumptions, we construct a hierarchy of increasingly tight moment-SOS relaxations for solving such problems. Most of the nice features of the moment-SOS hierarchy for the usual polynomial optimization are extended to this more complicated setting. In particular, asymptotic convergence of the hierarchy is guaranteed and finite convergence can be certified if some flat extension condition holds true. To extract global minimizers, we provide a linear algebra procedure for recovering a finitely atomic matrix-valued measure from truncated matrix-valued moments. As an application, we are able to solve the problem of minimizing the smallest eigenvalue of a polynomial matrix subject to a PMI constraint. If SOS-convexity is replaced by convexity, we can still approximate the optimal value as closely as desired by solving a sequence of semidefinite programs, and certify global optimality in case that certain flat extension conditions hold true. Finally, an extension to the non-convexity setting is provided under a rank one condition. To obtain the above-mentioned results, techniques from real algebraic geometry, matrix-valued measure theory, and convex optimization are employed.Comment: 35 page

    Min-max and robust polynomial optimization

    No full text
    Polynomial optimization, Min-max optimization, Robust optimization, Semidefinite relaxations,
    corecore