143,189 research outputs found

    Local Guarantees in Graph Cuts and Clustering

    Full text link
    Correlation Clustering is an elegant model that captures fundamental graph cut problems such as Min s−ts-t Cut, Multiway Cut, and Multicut, extensively studied in combinatorial optimization. Here, we are given a graph with edges labeled ++ or −- and the goal is to produce a clustering that agrees with the labels as much as possible: ++ edges within clusters and −- edges across clusters. The classical approach towards Correlation Clustering (and other graph cut problems) is to optimize a global objective. We depart from this and study local objectives: minimizing the maximum number of disagreements for edges incident on a single node, and the analogous max min agreements objective. This naturally gives rise to a family of basic min-max graph cut problems. A prototypical representative is Min Max s−ts-t Cut: find an s−ts-t cut minimizing the largest number of cut edges incident on any node. We present the following results: (1)(1) an O(n)O(\sqrt{n})-approximation for the problem of minimizing the maximum total weight of disagreement edges incident on any node (thus providing the first known approximation for the above family of min-max graph cut problems), (2)(2) a remarkably simple 77-approximation for minimizing local disagreements in complete graphs (improving upon the previous best known approximation of 4848), and (3)(3) a 1/(2+ε)1/(2+\varepsilon)-approximation for maximizing the minimum total weight of agreement edges incident on any node, hence improving upon the 1/(4+ε)1/(4+\varepsilon)-approximation that follows from the study of approximate pure Nash equilibria in cut and party affiliation games

    Balanced k-Means and Min-Cut Clustering

    Full text link
    Clustering is an effective technique in data mining to generate groups that are the matter of interest. Among various clustering approaches, the family of k-means algorithms and min-cut algorithms gain most popularity due to their simplicity and efficacy. The classical k-means algorithm partitions a number of data points into several subsets by iteratively updating the clustering centers and the associated data points. By contrast, a weighted undirected graph is constructed in min-cut algorithms which partition the vertices of the graph into two sets. However, existing clustering algorithms tend to cluster minority of data points into a subset, which shall be avoided when the target dataset is balanced. To achieve more accurate clustering for balanced dataset, we propose to leverage exclusive lasso on k-means and min-cut to regulate the balance degree of the clustering results. By optimizing our objective functions that build atop the exclusive lasso, we can make the clustering result as much balanced as possible. Extensive experiments on several large-scale datasets validate the advantage of the proposed algorithms compared to the state-of-the-art clustering algorithms

    Causal clustering: design of cluster experiments under network interference

    Full text link
    This paper studies the design of cluster experiments to estimate the global treatment effect in the presence of spillovers on a single network. We provide an econometric framework to choose the clustering that minimizes the worst-case mean-squared error of the estimated global treatment effect. We show that the optimal clustering can be approximated as the solution of a novel penalized min-cut optimization problem computed via off-the-shelf semi-definite programming algorithms. Our analysis also characterizes easy-to-check conditions to choose between a cluster or individual-level randomization. We illustrate the method's properties using unique network data from the universe of Facebook's users and existing network data from a field experiment

    Local Hypergraph Clustering using Capacity Releasing Diffusion

    Full text link
    Local graph clustering is an important machine learning task that aims to find a well-connected cluster near a set of seed nodes. Recent results have revealed that incorporating higher order information significantly enhances the results of graph clustering techniques. The majority of existing research in this area focuses on spectral graph theory-based techniques. However, an alternative perspective on local graph clustering arises from using max-flow and min-cut on the objectives, which offer distinctly different guarantees. For instance, a new method called capacity releasing diffusion (CRD) was recently proposed and shown to preserve local structure around the seeds better than spectral methods. The method was also the first local clustering technique that is not subject to the quadratic Cheeger inequality by assuming a good cluster near the seed nodes. In this paper, we propose a local hypergraph clustering technique called hypergraph CRD (HG-CRD) by extending the CRD process to cluster based on higher order patterns, encoded as hyperedges of a hypergraph. Moreover, we theoretically show that HG-CRD gives results about a quantity called motif conductance, rather than a biased version used in previous experiments. Experimental results on synthetic datasets and real world graphs show that HG-CRD enhances the clustering quality.Comment: 18 pages, 6 figure

    Tight Continuous Relaxation of the Balanced kk-Cut Problem

    Full text link
    Spectral Clustering as a relaxation of the normalized/ratio cut has become one of the standard graph-based clustering methods. Existing methods for the computation of multiple clusters, corresponding to a balanced kk-cut of the graph, are either based on greedy techniques or heuristics which have weak connection to the original motivation of minimizing the normalized cut. In this paper we propose a new tight continuous relaxation for any balanced kk-cut problem and show that a related recently proposed relaxation is in most cases loose leading to poor performance in practice. For the optimization of our tight continuous relaxation we propose a new algorithm for the difficult sum-of-ratios minimization problem which achieves monotonic descent. Extensive comparisons show that our method outperforms all existing approaches for ratio cut and other balanced kk-cut criteria.Comment: Long version of paper accepted at NIPS 201

    Spectral Clustering with Imbalanced Data

    Full text link
    Spectral clustering is sensitive to how graphs are constructed from data particularly when proximal and imbalanced clusters are present. We show that Ratio-Cut (RCut) or normalized cut (NCut) objectives are not tailored to imbalanced data since they tend to emphasize cut sizes over cut values. We propose a graph partitioning problem that seeks minimum cut partitions under minimum size constraints on partitions to deal with imbalanced data. Our approach parameterizes a family of graphs, by adaptively modulating node degrees on a fixed node set, to yield a set of parameter dependent cuts reflecting varying levels of imbalance. The solution to our problem is then obtained by optimizing over these parameters. We present rigorous limit cut analysis results to justify our approach. We demonstrate the superiority of our method through unsupervised and semi-supervised experiments on synthetic and real data sets.Comment: 24 pages, 7 figures. arXiv admin note: substantial text overlap with arXiv:1302.513
    • …
    corecore