4,624 research outputs found

    One Table to Count Them All: Parallel Frequency Estimation on Single-Board Computers

    Get PDF
    Sketches are probabilistic data structures that can provide approximate results within mathematically proven error bounds while using orders of magnitude less memory than traditional approaches. They are tailored for streaming data analysis on architectures even with limited memory such as single-board computers that are widely exploited for IoT and edge computing. Since these devices offer multiple cores, with efficient parallel sketching schemes, they are able to manage high volumes of data streams. However, since their caches are relatively small, a careful parallelization is required. In this work, we focus on the frequency estimation problem and evaluate the performance of a high-end server, a 4-core Raspberry Pi and an 8-core Odroid. As a sketch, we employed the widely used Count-Min Sketch. To hash the stream in parallel and in a cache-friendly way, we applied a novel tabulation approach and rearranged the auxiliary tables into a single one. To parallelize the process with performance, we modified the workflow and applied a form of buffering between hash computations and sketch updates. Today, many single-board computers have heterogeneous processors in which slow and fast cores are equipped together. To utilize all these cores to their full potential, we proposed a dynamic load-balancing mechanism which significantly increased the performance of frequency estimation.Comment: 12 pages, 4 figures, 3 algorithms, 1 table, submitted to EuroPar'1

    Deep Sketch Hashing: Fast Free-hand Sketch-Based Image Retrieval

    Full text link
    Free-hand sketch-based image retrieval (SBIR) is a specific cross-view retrieval task, in which queries are abstract and ambiguous sketches while the retrieval database is formed with natural images. Work in this area mainly focuses on extracting representative and shared features for sketches and natural images. However, these can neither cope well with the geometric distortion between sketches and images nor be feasible for large-scale SBIR due to the heavy continuous-valued distance computation. In this paper, we speed up SBIR by introducing a novel binary coding method, named \textbf{Deep Sketch Hashing} (DSH), where a semi-heterogeneous deep architecture is proposed and incorporated into an end-to-end binary coding framework. Specifically, three convolutional neural networks are utilized to encode free-hand sketches, natural images and, especially, the auxiliary sketch-tokens which are adopted as bridges to mitigate the sketch-image geometric distortion. The learned DSH codes can effectively capture the cross-view similarities as well as the intrinsic semantic correlations between different categories. To the best of our knowledge, DSH is the first hashing work specifically designed for category-level SBIR with an end-to-end deep architecture. The proposed DSH is comprehensively evaluated on two large-scale datasets of TU-Berlin Extension and Sketchy, and the experiments consistently show DSH's superior SBIR accuracies over several state-of-the-art methods, while achieving significantly reduced retrieval time and memory footprint.Comment: This paper will appear as a spotlight paper in CVPR201
    corecore