53,432 research outputs found

    High data rate systems for the future

    Get PDF
    Information systems in the next century will transfer data at rates that are much greater than those in use today. Satellite based communication systems will play an important role in networking users. Typical data rates; use of microwave, millimeter wave, or optical systems; millimeter wave communication technology; modulators/exciters; solid state power amplifiers; beam waveguide transmission systems; low noise receiver technology; optical communication technology; and the potential commercial applications of these technologies are discussed

    Millimeter-wave communication for a last-mile autonomous transport vehicle

    Get PDF
    Low-speed autonomous transport of passengers and goods is expected to have a strong, positive impact on the reliability and ease of travelling. Various advanced functions of the involved vehicles rely on the wireless exchange of information with other vehicles and the roadside infrastructure, thereby benefitting from the low latency and high throughput characteristics that 5G technology has to offer. This work presents an investigation of 5G millimeter-wave communication links for a low-speed autonomous vehicle, focusing on the effects of the antenna positions on both the received signal quality and the link performance. It is observed that the excess loss for communication with roadside infrastructure in front of the vehicle is nearly half-power beam width independent, and the increase of the root mean square delay spread plays a minor role in the resulting signal quality, as the absolute times are considerably shorter than the typical duration of 5G New Radio symbols. Near certain threshold levels, a reduction of the received power affects the link performance through an increased error vector magnitude of the received signal, and subsequent decrease of the achieved data throughput

    Beampattern-Based Tracking for Millimeter Wave Communication Systems

    Full text link
    We present a tracking algorithm to maintain the communication link between a base station (BS) and a mobile station (MS) in a millimeter wave (mmWave) communication system, where antenna arrays are used for beamforming in both the BS and MS. Downlink transmission is considered, and the tracking is performed at the MS as it moves relative to the BS. Specifically, we consider the case that the MS rotates quickly due to hand movement. The algorithm estimates the angle of arrival (AoA) by using variations in the radiation pattern of the beam as a function of this angle. Numerical results show that the algorithm achieves accurate beam alignment when the MS rotates in a wide range of angular speeds. For example, the algorithm can support angular speeds up to 800 degrees per second when tracking updates are available every 10 ms.Comment: 6 pages, to be published in Proc. IEEE GLOBECOM 2016, Washington, D.C., US

    Quantum Entanglement Distribution in Next-Generation Wireless Communication Systems

    Full text link
    In this work we analyze the distribution of quantum entanglement over communication channels in the millimeter-wave regime. The motivation for such a study is the possibility for next-generation wireless networks (beyond 5G) to accommodate such a distribution directly - without the need to integrate additional optical communication hardware into the transceivers. Future wireless communication systems are bound to require some level of quantum communications capability. We find that direct quantum-entanglement distribution in the millimeter-wave regime is indeed possible, but that its implementation will be very demanding from both a system-design perspective and a channel-requirement perspective.Comment: 6 pages, 4 figure

    mm-Wave Silicon ICs: Challenges and Opportunities

    Get PDF
    Millimeter-waves offer promising opportunities and interesting challenges to silicon integrated circuit and system designers. These challenges go beyond standard circuit design questions and span a broader range of topics including wave propagation, antenna design, and communication channel capacity limits. It is only meaningful to evaluate the benefits and shortcoming of silicon-based mm-wave integrated circuits in this broader context. This paper reviews some of these issues and presents several solutions to them
    corecore