53,432 research outputs found
High data rate systems for the future
Information systems in the next century will transfer data at rates that are much greater than those in use today. Satellite based communication systems will play an important role in networking users. Typical data rates; use of microwave, millimeter wave, or optical systems; millimeter wave communication technology; modulators/exciters; solid state power amplifiers; beam waveguide transmission systems; low noise receiver technology; optical communication technology; and the potential commercial applications of these technologies are discussed
Millimeter-wave communication for a last-mile autonomous transport vehicle
Low-speed autonomous transport of passengers and goods is expected to have a strong, positive impact on the reliability and ease of travelling. Various advanced functions of the involved vehicles rely on the wireless exchange of information with other vehicles and the roadside infrastructure, thereby benefitting from the low latency and high throughput characteristics that 5G technology has to offer. This work presents an investigation of 5G millimeter-wave communication links for a low-speed autonomous vehicle, focusing on the effects of the antenna positions on both the received signal quality and the link performance. It is observed that the excess loss for communication with roadside infrastructure in front of the vehicle is nearly half-power beam width independent, and the increase of the root mean square delay spread plays a minor role in the resulting signal quality, as the absolute times are considerably shorter than the typical duration of 5G New Radio symbols. Near certain threshold levels, a reduction of the received power affects the link performance through an increased error vector magnitude of the received signal, and subsequent decrease of the achieved data throughput
Beampattern-Based Tracking for Millimeter Wave Communication Systems
We present a tracking algorithm to maintain the communication link between a
base station (BS) and a mobile station (MS) in a millimeter wave (mmWave)
communication system, where antenna arrays are used for beamforming in both the
BS and MS. Downlink transmission is considered, and the tracking is performed
at the MS as it moves relative to the BS. Specifically, we consider the case
that the MS rotates quickly due to hand movement. The algorithm estimates the
angle of arrival (AoA) by using variations in the radiation pattern of the beam
as a function of this angle. Numerical results show that the algorithm achieves
accurate beam alignment when the MS rotates in a wide range of angular speeds.
For example, the algorithm can support angular speeds up to 800 degrees per
second when tracking updates are available every 10 ms.Comment: 6 pages, to be published in Proc. IEEE GLOBECOM 2016, Washington,
D.C., US
Quantum Entanglement Distribution in Next-Generation Wireless Communication Systems
In this work we analyze the distribution of quantum entanglement over
communication channels in the millimeter-wave regime. The motivation for such a
study is the possibility for next-generation wireless networks (beyond 5G) to
accommodate such a distribution directly - without the need to integrate
additional optical communication hardware into the transceivers. Future
wireless communication systems are bound to require some level of quantum
communications capability. We find that direct quantum-entanglement
distribution in the millimeter-wave regime is indeed possible, but that its
implementation will be very demanding from both a system-design perspective and
a channel-requirement perspective.Comment: 6 pages, 4 figure
mm-Wave Silicon ICs: Challenges and Opportunities
Millimeter-waves offer promising opportunities and interesting challenges to silicon integrated circuit and system designers. These challenges go beyond standard circuit design questions and span a broader range of topics including wave propagation, antenna design, and communication channel capacity limits. It is only meaningful to evaluate the benefits and shortcoming of silicon-based mm-wave integrated circuits in this broader context. This paper reviews some of these issues and presents several solutions to them
- …
