2 research outputs found

    Millimeter Scale Track Irregularity Surveying Based on ZUPT-Aided INS with Sub-Decimeter Scale Landmarks

    No full text
    Railway track irregularity surveying is important for the construction and the maintenance of railway lines. With the development of inertial devices, systems based on Inertial Navigation System (INS) have become feasible and popular approaches in track surveying applications. In order to overcome the requirement of high precision control points, this paper proposes a railway track irregularity measurement approach using the INS combined with the Zero Velocity Updates (ZUPT) technique and sub-decimeter scale landmarks. The equations for calculating track irregularity parameters from absolute position errors are deduced. Based on covariance analysis, the analytical relationships among the track irregularity measurements with the drifts of inertial sensors, the initial attitude errors and the observations of velocity and position are established. Simulations and experimental results show that the relative accuracy for 30 m chord of the proposed approach for track irregularity surveying can reach approximately 1 mm (1σ) with gyro bias instability of 0.01°/h, random walk noise of 0.005 ° / h , and accelerometer bias instability of 50 μ g , random noise of 10 μ g / Hz , while velocity observations are provided by the ZUPT technique at about every 60 m intervals. This accuracy can meet the most stringent requirements of millimeter scale medium wavelength track irregularity surveying for railway lines. Furthermore, this approach reduces the requirement of high precision landmarks which can lighten the maintenance burden of control points and improve the work efficiency of railway track irregularity measurements

    Measurement and Characterization of Track Geometry Data: Literature Review and Recommendations for Processing FRA ATIP Program Data

    Get PDF
    Task Order 86From October 2018 to March 2019, the Federal Railroad Administration sponsored Transportation Technology Center, Inc. to conduct a literature review on the methods of measurement and characterization of track geometry. The goal of the review was to summarize the current state of track geometry measurement and to provide recommendations on methods for processing and characterizing track geometry data collected under FRA\u2019s Automated Track Inspection Program
    corecore