3,189 research outputs found

    Adaptive Network Dynamics and Evolution of Leadership in Collective Migration

    Full text link
    The evolution of leadership in migratory populations depends not only on costs and benefits of leadership investments but also on the opportunities for individuals to rely on cues from others through social interactions. We derive an analytically tractable adaptive dynamic network model of collective migration with fast timescale migration dynamics and slow timescale adaptive dynamics of individual leadership investment and social interaction. For large populations, our analysis of bifurcations with respect to investment cost explains the observed hysteretic effect associated with recovery of migration in fragmented environments. Further, we show a minimum connectivity threshold above which there is evolutionary branching into leader and follower populations. For small populations, we show how the topology of the underlying social interaction network influences the emergence and location of leaders in the adaptive system. Our model and analysis can describe other adaptive network dynamics involving collective tracking or collective learning of a noisy, unknown signal, and likewise can inform the design of robotic networks where agents use decentralized strategies that balance direct environmental measurements with agent interactions.Comment: Submitted to Physica D: Nonlinear Phenomen

    Task allocation and migration on a star-network

    Full text link
    Modern day applications require computational power which cannot be satisfied with uniprocessor systems. So the use of multiprocessor systems in such jobs becomes necessary. This thesis presents an approach of allocating the tasks to a multiprocessor system called the star network. Generally, an incoming task requires only a part of the star network, and not the whole network, for its execution. So, we need a task allocation strategy which can identify the free processors forming a substar and allocate tasks to these substars. The task executes for a time equal to task residence time and then relinquishes the substar. Sometimes there might be enough free processors forming a substar in the network which can host the next incoming task. But the allocation strategy may not recognize the free processors as a substar. To create a substar of free processors to host the next task, task migration has to be performed such that the free processors are grouped into a substar. In this work, three processor allocation strategies: static, dynamic and dynamic work task migration are presented. Using simulations, a comparison of these strategies is done to obtain the percentage improvement of one strategy over the other. Also a comparative study of the working of these strategies in star-networks and hypercubes is done. A saving of 5-11% is achieved by for both the networks incorporating task-migration in dynamic allocation over simple dynamic allocation

    Task swapping networks in distributed systems

    Full text link
    In this paper we propose task swapping networks for task reassignments by using task swappings in distributed systems. Some classes of task reassignments are achieved by using iterative local task swappings between software agents in distributed systems. We use group-theoretic methods to find a minimum-length sequence of adjacent task swappings needed from a source task assignment to a target task assignment in a task swapping network of several well-known topologies.Comment: This is a preprint of a paper whose final and definite form is published in: Int. J. Comput. Math. 90 (2013), 2221-2243 (DOI: 10.1080/00207160.2013.772985

    Parallel processing for scientific computations

    Get PDF
    The main contribution of the effort in the last two years is the introduction of the MOPPS system. After doing extensive literature search, we introduced the system which is described next. MOPPS employs a new solution to the problem of managing programs which solve scientific and engineering applications on a distributed processing environment. Autonomous computers cooperate efficiently in solving large scientific problems with this solution. MOPPS has the advantage of not assuming the presence of any particular network topology or configuration, computer architecture, or operating system. It imposes little overhead on network and processor resources while efficiently managing programs concurrently. The core of MOPPS is an intelligent program manager that builds a knowledge base of the execution performance of the parallel programs it is managing under various conditions. The manager applies this knowledge to improve the performance of future runs. The program manager learns from experience

    Cooperative learning in multi-agent systems from intermittent measurements

    Full text link
    Motivated by the problem of tracking a direction in a decentralized way, we consider the general problem of cooperative learning in multi-agent systems with time-varying connectivity and intermittent measurements. We propose a distributed learning protocol capable of learning an unknown vector μ\mu from noisy measurements made independently by autonomous nodes. Our protocol is completely distributed and able to cope with the time-varying, unpredictable, and noisy nature of inter-agent communication, and intermittent noisy measurements of μ\mu. Our main result bounds the learning speed of our protocol in terms of the size and combinatorial features of the (time-varying) networks connecting the nodes

    From MARTE to Reconfigurable NoCs: A model driven design methodology

    Get PDF
    Due to the continuous exponential rise in SoC's design complexity, there is a critical need to find new seamless methodologies and tools to handle the SoC co-design aspects. We address this issue and propose a novel SoC co-design methodology based on Model Driven Engineering and the MARTE (Modeling and Analysis of Real-Time and Embedded Systems) standard proposed by Object Management Group, to raise the design abstraction levels. Extensions of this standard have enabled us to move from high level specifications to execution platforms such as reconfigurable FPGAs. In this paper, we present a high level modeling approach that targets modern Network on Chips systems. The overall objective: to perform system modeling at a high abstraction level expressed in Unified Modeling Language (UML); and afterwards, transform these high level models into detailed enriched lower level models in order to automatically generate the necessary code for final FPGA synthesis

    Analysis of end-to-end multi-domain management and orchestration frameworks for software defined infrastructures: An architectural survey

    Get PDF
    Over the last couple of years, industry operators' associations issued requirements towards an end-to-end management and orchestration plane for 5G networks. Consequently, standard organisations started their activities in this domain. This article provides an analysis and an architectural survey of these initiatives and of the main requirements, proposes descriptions for the key concepts of domain, resource and service slicing, end-to-end orchestration and a reference architecture for the end-to-end orchestration plane. Then, a set of currently available or under development domain orchestration frameworks are mapped to this reference architecture. These frameworks, meant to provide coordination and automated management of cloud and networking resources, network functions and services, fulfil multi-domain (i.e. multi-technology and multi-operator) orchestration requirements, thus enabling the realisation of an end-to-end orchestration plane. Finally, based on the analysis of existing single-domain and multi-domain orchestration components and requirements, this paper presents a functional architecture for the end-to-end management and orchestration plane, paving the way to its full realisation

    Analysis of end-to-end multi-domain management and orchestration frameworks for software defined infrastructures: an architectural survey

    Get PDF
    Over the last couple of years, industry operators' associations issued requirements towards an end-to-end management and orchestration plane for 5G networks. Consequently, standard organisations started their activities in this domain. This article provides an analysis and an architectural survey of these initiatives and of the main requirements, proposes descriptions for the key concepts of domain, resource and service slicing, end-to-end orchestration and a reference architecture for the end-to-end orchestration plane. Then, a set of currently available or under development domain orchestration frameworks are mapped to this reference architecture. These frameworks, meant to provide coordination and automated management of cloud and networking resources, network functions and services, fulfil multi-domain (i.e. multi-technology and multi-operator) orchestration requirements, thus enabling the realisation of an end-to-end orchestration plane. Finally, based on the analysis of existing single-domain and multi-domain orchestration components and requirements, this paper presents a functional architecture for the end-to-end management and orchestration plane, paving the way to its full realisation.This work was partially supported by the ICT14 5GExchange (5GEx) innovation project (grant agreement no.671636) co-funded by the European Union under the Horizon 2020 EU Framework Programme.Publicad

    Current state of Linked Data in digital libraries

    Get PDF
    The Semantic Web encourages institutions, including libraries, to collect, link and share their data across the Web in order to ease its processing by machines to get better queries and results. Linked Data technologies enable us to connect related data on the Web using the principles outlined by Tim Berners-Lee in 2006. Digital libraries have great potential to exchange and disseminate data linked to external resources using Linked Data. In this paper, a study about the current uses of Linked Data in digital libraries, including the most important implementations around the world, is presented. The study focuses on selected vocabularies and ontologies, benefits and problems encountered in implementing Linked Data in digital libraries. In addition, it also identifies and discusses specific challenges that digital libraries face, offering suggestions for ways in which libraries can contribute to the Semantic Web. The study uses an adapted methodology for literature review, to find data available to answer research questions. It is based on the information found in the library websites recommended by W3C Library Linked Data Incubator Group in 2011, and scientific publications from Google Scholar, Scopus, ACM and Springer from the last 5 years. The selected libraries for the study are the National Library of France, the Europeana Library, the Library of Congress of the USA, the British Library and the National Library of Spain. In this paper, we outline the best practices found in each experience and identify gaps and future trends.This work was supported by the Prometeo Project from the Secretary of Higher Education, Science, Technology and Innovation (SENESCYT) of the Ecuadorian Government and by the project GEODAS-BI (TIN2012-37493-C03-03) supported by the Ministry of Economy and Competitiveness of Spain (MINECO). Alejandro Mate´ was funded by the Generalitat Valenciana (APOSTD/2014/064)
    corecore