5,748 research outputs found
Flame tube parametric studies for control of fuel bound nitrogen using rich-lean two-stage combustion
An experimental parametric study of rich-lean two-stage combustion in a flame tube is described and approaches for minimizing the conversion of fuel-bound nitrogen to nitrogen oxides in a premixed, homogeneous combustion system are evaluated. Air at 672 K and 0.48 MPa was premixed with fuel blends of propane, toluene, and pyridine at primary equivalence ratios ranging from 0.5 to 2.0 and secondary equivalence ratios of 0.5 to 0.7. Distillates of SRC-II, a coal syncrude, were also tested. The blended fuels were proportioned to vary fuel hydrogen composition from 9.0 to 18.3 weight percent and fuel nitrogen composition from zero to 1.5 weight percent. Rich-lean combustion proved effective in reducing fuel nitrogen to NO sub x conversion; conversion rates up to 10 times lower than those normally produced by single-stage combustion were achieved. The optimum primary equivalence ratio, where the least NO sub x was produced and combustion efficiency was acceptable, shifted between 1.4 and 1.7 with changes in fuel nitrogen content and fuel hydrogen content. Increasing levels of fuel nitrogen content lowered the conversion rate, but not enough to avoid higher NO sub x emissions as fuel nitrogen increased
Fuel quality-processing study. Volume 2: Literature survey
The validity of initial assumptions about raw materials choices and relevant upgrading processing options was confirmed. The literature survey also served to define the on-site (at the turbine location) options for fuel treatment and exhaust gas treatment. The literature survey also contains a substantial compilation of specification and physical property information about liquid fuel products relevant to industrial gas turbines
<i>Saccharomyces cerevisiae</i> in the production of whisk(e)y
Whisk(e)y is a major global distilled spirit beverage. Whiskies are produced from cereal starches that are saccharified, fermented and distilled prior to spirit maturation. The strain of Saccharomyces cerevisiae employed in whisky fermentations is crucially important not only in terms of ethanol yields, but also for production of minor yeast metabolites which collectively contribute to development of spirit flavour and aroma characteristics. Distillers must therefore pay very careful attention to the strain of yeast exploited to ensure consistency of fermentation performance and spirit congener profiles. In the Scotch whisky industry, initiatives to address sustainability issues facing the industry (for example, reduced energy and water usage) have resulted in a growing awareness regarding criteria for selecting new distilling yeasts with improved efficiency. For example, there is now a desire for Scotch whisky distilling yeasts to perform under more challenging conditions such as high gravity wort fermentations. This article highlights the important roles of S. cerevisiae strains in whisky production (with particular emphasis on Scotch) and describes key fermentation performance attributes sought in distiller’s yeast, such as high alcohol yields, stress tolerance and desirable congener profiles. We hope that the information herein will be useful for whisky producers and yeast suppliers in selecting new distilling strains of S. cerevisiae, and for the scientific community to stimulate further research in this area
Computer analysis of effects of altering jet fuel properties on refinery costs and yields
This study was undertaken to evaluate the adequacy of future U.S. jet fuel supplies, the potential for large increases in the cost of jet fuel, and to what extent a relaxation in jet fuel properties would remedy these potential problems. The results of the study indicate that refiners should be able to meet jet fuel output requirements in all regions of the country within the current Jet A specifications during the 1990-2010 period. The results also indicate that it will be more difficult to meet Jet A specifications on the West Coast, because the feedstock quality is worse and the required jet fuel yield (jet fuel/crude refined) is higher than in the East. The results show that jet fuel production costs could be reduced by relaxing fuel properties. Potential cost savings in the East (PADDs I-IV) through property relaxation were found to be about 1.3 cents/liter (5 cents/gallon) in January 1, 1981 dollars between 1990 and 2010. However, the savings from property relaxation were all obtained within the range of current Jet A specifications, so there is no financial incentive to relax Jet A fuel specifications in the East. In the West (PADD V) the potential cost savings from lowering fuel quality were considerably greater than in the East. Cost savings from 2.7 to 3.7 cents/liter (10-14 cents/gallon) were found. In contrast to the East, on the West Coast a significant part of the savings was obtained through relaxation of the current Jet A fuel specifications
Compatibility of alternative fuels with advanced automotive gas turbine and stirling engines. A literature survey
The application of alternative fuels in advanced automotive gas turbine and Stirling engines is discussed on the basis of a literature survey. These alternative engines are briefly described, and the aspects that will influence fuel selection are identified. Fuel properties and combustion properties are discussed, with consideration given to advanced materials and components. Alternative fuels from petroleum, coal, oil shale, alcohol, and hydrogen are discussed, and some background is given about the origin and production of these fuels. Fuel requirements for automotive gas turbine and Stirling engines are developed, and the need for certain reseach efforts is discussed. Future research efforts planned at Lewis are described
MONETARY POLICY AND OIL PRICES
This article discusses the relationship between monetary policy and oil prices and, in a broader sense, commodity prices. Firstly, it focuses on describing the relationship between key macroeconomic variables, gas prices and other commodity prices relative to oil prices. Subsequently, it discusses the existence of “transmission channels” through which monetary policy can be propagated to oil prices (or prices of commodities). It then provides an insight into the CNB’s forecasting process, both by looking retrospectively at the oil price outlook in the past and by analysing a transitory and a permanent shock (a rise in the oil price of USD 30/b). The simulated oil price shock is calculated from the average level of Brent oil prices in the first quarter of 2010, i.e. USD 77.50/b.oil price ; monetary policy ; real interest rate ; oil price shock JEL Classification: G12 ; G14 ; D53
Analytical fuel property effects, small combustors, phase 1
The effects of nonstandard aviation fuels on a typical small gas turbine combustor was analyzed. The T700/CT7 engine family was chosen as being representative of the class of aircraft power plants desired. Fuel properties, as specified by NASA, are characterized by low hydrogen content and high aromatics levels. Higher than normal smoke output and flame radiation intensity for the current T700 combustor which serves as a baseline were anticipated. It is, therefore, predicted that out of specification smoke visibility and higher than normal shell temperatures will exist when using NASA ERBS fuels with a consequence of severe reduction in cyclic life. Three new designs are proposed to compensate for the deficiencies expected with the existing design. They have emerged as the best of the eight originally proposed redesigns or combinations thereof. After the five choices that were originally made by NASA on the basis of competing performance factors, General Electric narrowed the field to the three proposed
Volatiles in Distillates of Cider Aged in American Oak Wood
kinds of cider aged in oak wood. During aging, a significant increase was detected in the
concentration of diethyl butanedioate, ethyl 3-methylbutanoate, esters of long-chain fatty acids,
and 1-hexanol; in contrast, the acetate esters and long-chain fatty acids decreased. When cider
made with traditional technology was used as raw material, spirits with higher concentrations of
decanoic and dodecanoic ethyl esters and long-chain fatty acids were obtained. When cluster and
factor analyses were employed, “natural” groupings among the spirits studied were obtained on the
basis of the raw material used and aging time
- …
