19,859 research outputs found

    3DTouch: A wearable 3D input device with an optical sensor and a 9-DOF inertial measurement unit

    Full text link
    We present 3DTouch, a novel 3D wearable input device worn on the fingertip for 3D manipulation tasks. 3DTouch is designed to fill the missing gap of a 3D input device that is self-contained, mobile, and universally working across various 3D platforms. This paper presents a low-cost solution to designing and implementing such a device. Our approach relies on relative positioning technique using an optical laser sensor and a 9-DOF inertial measurement unit. 3DTouch is self-contained, and designed to universally work on various 3D platforms. The device employs touch input for the benefits of passive haptic feedback, and movement stability. On the other hand, with touch interaction, 3DTouch is conceptually less fatiguing to use over many hours than 3D spatial input devices. We propose a set of 3D interaction techniques including selection, translation, and rotation using 3DTouch. An evaluation also demonstrates the device's tracking accuracy of 1.10 mm and 2.33 degrees for subtle touch interaction in 3D space. Modular solutions like 3DTouch opens up a whole new design space for interaction techniques to further develop on.Comment: 8 pages, 7 figure

    Machine Analysis of Facial Expressions

    Get PDF
    No abstract

    Sublimate: State-Changing Virtual and Physical Rendering to Augment Interaction with Shape Displays

    Get PDF
    Recent research in 3D user interfaces pushes towards immersive graphics and actuated shape displays. Our work explores the hybrid of these directions, and we introduce sublimation and deposition, as metaphors for the transitions between physical and virtual states. We discuss how digital models, handles and controls can be interacted with as virtual 3D graphics or dynamic physical shapes, and how user interfaces can rapidly and fluidly switch between those representations. To explore this space, we developed two systems that integrate actuated shape displays and augmented reality (AR) for co-located physical shapes and 3D graphics. Our spatial optical see-through display provides a single user with head-tracked stereoscopic augmentation, whereas our handheld devices enable multi-user interaction through video seethrough AR. We describe interaction techniques and applications that explore 3D interaction for these new modalities. We conclude by discussing the results from a user study that show how freehand interaction with physical shape displays and co-located graphics can outperform wand-based interaction with virtual 3D graphics.National Science Foundation (U.S.) (Graduate Research Fellowship Grant 1122374

    HandPainter – 3D sketching in VR with hand-based physical proxy

    Get PDF
    3D sketching in virtual reality (VR) enables users to create 3D virtual objects intuitively and immersively. However, previous studies showed that mid-air drawing may lead to inaccurate sketches. To address this issue, we propose to use one hand as a canvas proxy and the index finger of the other hand as a 3D pen. To this end, we first perform a formative study to compare two-handed interaction with tablet-pen interaction for VR sketching. Based on the findings of this study, we design HandPainter, a VR sketching system which focuses on the direct use of two hands for 3D sketching without requesting any tablet, pen, or VR controller. Our implementation is based on a pair of VR gloves, which provide hand tracking and gesture capture. We devise a set of intuitive gestures to control various functionalities required during 3D sketching, such as canvas panning and drawing positioning. We show the effectiveness of HandPainter by presenting a number of sketching results and discussing the outcomes of a user study-based comparison with mid-air drawing and tablet-based sketching tools
    corecore