26 research outputs found
Microstructures and resistivity of cuprate/manganite bilayer deposited on SrTiO3 substrate
Thin Yba[SUB2]Cu[SUB3]O[SUB7-δ/La[SUB0.67]Ca[SUB0.33]MnO[SUB3] (YBCO/LCMO) films were grown on SrTiO[SUB3](STO)substrates by magnetron sputtering technique. The microstructures of the bilayers were characterized and a standard four-probe technique was applied to measure the resistivity of the samples. The interdiffusions at the YBCO/LCMO and LCMO/STO interfaces formed two transient layers with the thickness of about 3 and 2 nm, respectively. All the bilayers were well textured along the c axis. At low temperature, the superconductivity can only be observed when the thickness of YBCO is more than 25 nm. When the thickness of YBCO is less than 8 nm, the bilayers show only ferromagnetism. The superconductivity and ferromagnetism perhaps coexist in the bilayer with the YBCO thickness of 12.5 nm. These interesting properties are related to the interaction between spin polarized electrons in the manganites and the cooper pairs in the cuprates. © 2003 American Institute of Physics.published_or_final_versio
High Transition Temperature Superconductor/Insulator Bilayers for the Development of Ultra-Fast Electronics
High transition temperature superconductor (HTc)/SrTiO3 (STO) bilayers were fabricated by sputtering deposition on (100) STO substrates. Their transport and morphological properties were characterized using conductive atomic force microscopy. The STO barriers present good insulating properties, with long attenuation lengths (λ ∼ 1 nm) which reduce the junction resistance and increase the operating critical current. The samples present roughness values smaller than 1 nm, with an extremely low density of surface defects (∼5 × 10−5 defects/μm2). The high control of the barrier quality over large defect free surfaces is encouraging for the development of microelectronics devices based in HTc Josephson junctions.Fil: Sirena, Martin. Comision Nacional de Energia Atomica. Gerencia del Area de Investigaciones y Aplicaciones no Nucleares. Gerencia de Fisica (CAB); Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Aviles Felix, Luis Steven. Comision Nacional de Energia Atomica. Gerencia del Area de Investigaciones y Aplicaciones no Nucleares. Gerencia de Fisica (CAB); Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Haberkorn, Nestor Fabian. Comision Nacional de Energia Atomica. Gerencia del Area de Investigaciones y Aplicaciones no Nucleares. Gerencia de Fisica (CAB); Argentin
Thin Film Stabilization of Different VO<sub>2</sub> Polymorphs
In recent years, VO2 has emerged as a popular candidate among the scientific community across the globe owing to its unique technological and fundamental aspects. VO2 can exist in several polymorphs (such as: A, B, C, D, M1, M2, M3, P, R and T) which offer a broad spectrum of functionalities suitable for numerous potential applications likewise smart windows, switching devices, memory materials, battery materials and so on. Each phase of VO2 has specific physical and chemical properties. The device realization based on specific functionality call for stabilization of good quality single phase VO2 thin films of desired polymorphs. Hence, the control on the growth of different VO2 polymorphs in thin film form is very crucial. Different polymorphs of VO2 can be stabilized by selecting the growth route, growth parameters and type of substrate etc. In this chapter, we present an overview of stabilization of the different phases of VO2 in the thin film form and the identification of these phases mainly by X-ray diffraction and Raman spectroscopy techniques
Engineering mass transport properties in oxide ionic and mixed ionic electronic thin film ceramic conductors for energy applications
New emerging disciplines such as Nanoionics and Iontronics are dealing with
the exploitation of mesoscopic size effects in materials, which become visible
(if not predominant) when downsizing the system to the nanoscale. Driven by the
worldwide standardisation of thin film deposition techniques, the access to
radically different properties than those found in the bulk macroscopic systems
can be accomplished. This opens up promising approaches for the development of
advanced microdevices, by taking advantage of the nanostructural deviations
found in nanometre sized, interface dominated materials compared to the ideal
relaxed structure of the bulk. A completely new set of functionalities can be
explored, with implications in many different fields such as energy conversion
and storage, or information technologies. This manuscript reviews the
strategies, employed and foreseen, for engineering mass transport properties in
thin film ceramics, with the focus in oxide ionic and mixed ionic electronic
conductors and their application in micro power sources
The 2016 oxide electronic materials and oxide interfaces roadmap
Lorenz, M. et al.Oxide electronic materials provide a plethora of possible applications and offer ample
opportunity for scientists to probe into some of the exciting and intriguing phenomena
exhibited by oxide systems and oxide interfaces. In addition to the already diverse spectrum
of properties, the nanoscale form of oxides provides a new dimension of hitherto unknown
phenomena due to the increased surface-to-volume ratio.
Oxide electronic materials are becoming increasingly important in a wide range of
applications including transparent electronics, optoelectronics, magnetoelectronics, photonics,
spintronics, thermoelectrics, piezoelectrics, power harvesting, hydrogen storage and
environmental waste management. Synthesis and fabrication of these materials, as well as
processing into particular device structures to suit a specific application is still a challenge.
Further, characterization of these materials to understand the tunability of their properties
and the novel properties that evolve due to their nanostructured nature is another facet of the
challenge. The research related to the oxide electronic field is at an impressionable stage, and
this has motivated us to contribute with a roadmap on ‘oxide electronic materials and oxide
interfaces’.
This roadmap envisages the potential applications of oxide materials in cutting edge
technologies and focuses on the necessary advances required to implement these materials,
including both conventional and novel techniques for the synthesis, characterization,
processing and fabrication of nanostructured oxides and oxide-based devices. The
contents of this roadmap will highlight the functional and correlated properties of oxides
in bulk, nano, thin film, multilayer and heterostructure forms, as well as the theoretical
considerations behind both present and future applications in many technologically
important areas as pointed out by Venkatesan.
The contributions in this roadmap span several thematic groups which are represented
by the following authors: novel field effect transistors and bipolar devices by Fortunato,
Grundmann, Boschker, Rao, and Rogers; energy conversion and saving by Zaban, Weidenkaff,
and Murakami; new opportunities of photonics by Fompeyrine, and Zuniga-Perez; multiferroic
materials including novel phenomena by Ramesh, Spaldin, Mertig, Lorenz, Srinivasan,
and Prellier; and concepts for topological oxide electronics by Kawasaki, Pentcheva, and
Gegenwart. Finally, Miletto Granozio presents the European action ‘towards oxide-based
electronics’ which develops an oxide electronics roadmap with emphasis on future nonvolatile
memories and the required technologies.
In summary, we do hope that this oxide roadmap appears as an interesting up-to-date
snapshot on one of the most exciting and active areas of solid state physics, materials science,
and chemistry, which even after many years of very successful development shows in short
intervals novel insights and achievements.This work has been partially supported
by the TO-BE COST action MP1308. J F acknowledges
financial support from the Spanish Ministry of Economy and
Competitiveness, through the ‘Severo Ochoa’ Programme
for Centres of Excellence in R&D (SEV-2015-0496) and
MAT2014-56063-C2-1R, and from the Catalan Government
(2014 SGR 734). F.M.G. acknowledges support from MIUR
through the PRIN 2010 Project ‘OXIDE’.Peer reviewe
Estudio de interfases en óxidos complejos por técnicas avanzadas de microscopía electrónica
Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Físicas, leída el 07-05-2015Pequeños cambios a nivel atómico de la estructura, composición o estado electrónico de un material pueden producir sorprendentes efectos macroscópicos. En particular, en óxidos complejos basados en metales de transición, un gran número de fenómenos físicos como transiciones metal-aislante, magnetorresistencia colosal o multiferroicidad son extremadamente sensibles a estas variaciones. Por tanto, para abordar el estudio de sistemas con tales características, técnicas experimentales con capacidad de analizar materiales a escala atómica y en el espacio real se hacen indispensables. La microscopía electrónica de transmisión con barrido combinada con la espectroscopia de pérdida de energía de electrones (EELS) forman una pareja con posibilidades únicas para estos estudios. Estas técnicas han crecido enormemente desde el desarrollo del corrector de aberración esférica en la última década y su alta resolución espacial nos permite ahora estudiar átomos individuales. El uso de estos equipos supone una herramienta única para el estudio de sistemas complejos, más aún cuando la dimensionalidad se reduce a pocos nanómetros como en películas delgadas o interfaces. En estos casos, técnicas de difracción promediadas macroscópicamente pueden no ser suficientemente sensibles a los parámetros que rigen la física relevante y por tanto, la gran sensibilidad espacial de la microscopía electrónica supone una gran ventaja. El objetivo principal de este trabajo será precisamente establecer la conexión entre los mecanismos a nivel atómico y las propiedades físicas de una serie de sistemas basados en óxidos complejos cuidadosamente escogidos. Analizaremos en el espacio real fluctuaciones mínimas, casi por debajo del umbral de detectabilidad, responsables últimas del comportamiento macroscópico.En primer lugar, se ha estudiado como pequeñas concentraciones de vacantes de oxígeno, tanto inducidas mediante irradiación como intrínsecas al material, pueden determinar las propiedades físicas macroscópicas del sistema. Se ha observado cómo procesos de irradiación dan lugar a la formación de una capa de TiO con alto grado cristalino en la superficie de monocristales de TiO2 y como además pueden producir estados metálicos superficiales en un aislante de bandas como es el SrTiO3. Se ha analizado además como la reestructuración electrónica debida a la presencia de vacantes de oxígeno estructurales explica por primera vez el origen electroestático del bloqueo iónico en fronteras de grano de materiales con importantes aplicaciones energéticas. Se ha abordado también el estudio de pequeñas variaciones estructurales, en particular, distorsiones colectivas de la red de oxígeno en heteroestructuras de óxidos complejos y su relación con la aparición de estados físicos inexistentes en los materiales masivos. Se ha encontrado una correlación entre rotaciones del octaedro de oxígenos producidas por tensiones epitaxiales y la estabilización de una fase interfacial ferromagnética y conductora en superredes formadas por óxidos aislantes. Además, se ha extendido este análisis a sistemas más complejos como uniones túnel multiferroicas donde se ha obtenido la configuración de dominios ferroeléctricos midiendo las distorsiones en la red de oxígenos para cada celda unidad. Este estudio muestra una de las primeras observaciones experimentales de una configuración de dominios ferroeléctricos tipo head-to-head en capas ultra-delgadas. Se ha encontrado además la presencia de una carga de apantallamiento confinada a la pared de dominio que genera estados electrónicos accesibles en el interior de la barrera ferroeléctrica, proporcionando los mecanismos para estabilizar un tuneleamiento cuántico resonante.El continuo desarrollo de estas técnicas experimentales hace vislumbrar un futuro prometedor tanto para la ciencia de materiales como para la microscopía electrónica. La exploración a escala atómica de fenómenos físicos aún por desvelar está ahora, más que nunca a nuestro alcance.Fac. de Ciencias FísicasTRUEunpu
Recommended from our members
New ways to tune the multi-functionality of oxide thin films for memory applications
This thesis presents studies on engineering the electrical and magnetic properties in oxide thin films using vertically-aligned nanocomposites (VAN). The works aim to enhance their multi-functionality for various memory applications.
First, electroforming-free resistive switching (RS) with high ON/OFF ratio is realized in a novel model VAN system based on self-assembled Sm-doped CeO2 and SrTiO3 films that allow separate tailoring of nano-scale ionic and electronic channels at a high density (1012 inch-2). These devices allow precise engineering of the resistance states, thus enabling large and tunable ON/OFF ratios and high stability for acting as resistive random access memory (RRAM) devices.
Second, the ferromagnetic insulating (FMI) and metallic (FMM) properties of La0.9Ba0.1MnO3 (LBMO) are tuned using VAN. La0.9Ba0.1MnO3 is FMI in bulk but usually shows metallicity in plain films. By using VAN consisting of CeO2 nanocolumns embedded in a La0.9Ba0.1MnO3 matrix, the FMI property is maintained in thin film form. The CeO2 phase acts as strain-controlling nanocolumns and at the same time, produces light Ce doping of the LBMO and thus filling of intrinsic cation vacancies. Together these reduce the unwanted double exchange (DE) coupling. This is hard to realize in plain LBMO films which contain cation vacancies, and have several strain-relaxing LBMO phases which result in an enhanced Mn4+/Mn3+ ratio, and hence to DE coupling and metallicity. Besides, by varying the growth temperature of the LBMO–CeO2 VAN, the system is engineered from a FMI to a FMM and the magnetoresistance is highly tunable, which are correlated to the tuning of the lateral size of both phases. These effects are attributed to a dimension change-induced change in the electronic band structure. The tunable properties of LBMO–CeO2 VAN make it a good candidate as low-power-consumption, high-Tc FMI and FMM components in magnetic random access memory (MRAM) and spintronic devices.
Last, in-situ electric field tuning of magnetic properties is studied in La0.9Ba0.1MnO3-ZnO VAN, a novel candidate for magnetoelectric random access memory (MERAM) devices. The M-H curves and the remanence are tuned by applying electric fields at a low temperature (10 K). The possible origins for the magnetic modifications are discussed rationally, which include Joule heating, piezoelectric strain, current-induced induction field and charge trapping/detrapping related to a resistive switching effect (which is found to be the most likely mechanism for a hysteretic tuning of the remanence). All these effects are correlated to the existence of the ZnO phase. This work helps to understand the charge doping effect in manganite-ZnO VAN systems.Cambridge Commonwealth, European & International Trus
