1,933,029 research outputs found
Fluorescence antibunching microscopy
Breaking the diffraction limit in microscopy by utilizing quantum properties
of light has been the goal of intense research in the recent years. We propose
a quantum superresolution technique based on non-classical emission statistics
of fluorescent markers, routinely used as contrast labels for bio-imaging. The
technique can be readily implemented using standard fluorescence microscopy
equipment
Scanning ultrafast electron microscopy
Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for which the pulse contains at most one or a few electrons, thus achieving imaging without the space-charge effect between electrons, and still in ten(s) of seconds. For imaging, the secondary electrons from surface structures are detected, as demonstrated here for material surfaces and biological specimens. By recording backscattered electrons, diffraction patterns from single crystals were also obtained. Scanning pulsed-electron microscopy with the acquired spatiotemporal resolutions, and its efficient heat-dissipation feature, is now poised to provide in situ 4D imaging and with environmental capability
Scanning Quantum Dot Microscopy
Interactions between atomic and molecular objects are to a large extent
defined by the nanoscale electrostatic potentials which these objects produce.
We introduce a scanning probe technique that enables three-dimensional imaging
of local electrostatic potential fields with sub-nanometer resolution.
Registering single electron charging events of a molecular quantum dot attached
to the tip of a (qPlus tuning fork) atomic force microscope operated at 5 K, we
quantitatively measure the quadrupole field of a single molecule and the dipole
field of a single metal adatom, both adsorbed on a clean metal surface. Because
of its high sensitivity, the technique can record electrostatic potentials at
large distances from their sources, which above all will help to image complex
samples with increased surface roughness.Comment: main text: 5 pages, 4 figures, supplementary information file: 4
pages, 2 figure
Quantum differential ghost microscopy
Quantum correlations become formidable tools for beating classical capacities
of measurement. Preserving these advantages in practical systems, where
experimental imperfections are unavoidable, is a challenge of the utmost
importance. Here we propose and realize a quantum ghost imaging protocol able
to compensate for the detrimental effect of detection noise and losses. This
represents an important improvement as quantum correlations allow low
brightness imaging, desirable for reducing the absorption dose. In particular,
we develop a comprehensive model starting from a ghost imaging scheme
elaborated for bright thermal light, known as differential ghost imaging and
particularly suitable in the relevant case of faint or sparse objects. We
perform the experiment using SPDC light in microscopic configuration. The image
is reconstructed exploiting non-classical intensity correlation rather than
photon pairs detection coincidences. On one side we validate the theoretical
model and on the other we show the applicability of this technique by
reconstructing a biological object with 5 micrometers resolution
Scanning Quantum Decoherence Microscopy
The use of qubits as sensitive magnetometers has been studied theoretically
and recent demonstrated experimentally. In this paper we propose a
generalisation of this concept, where a scanning two-state quantum system is
used to probe the subtle effects of decoherence (as well as its surrounding
electromagnetic environment). Mapping both the Hamiltonian and decoherence
properties of a qubit simultaneously, provides a unique image of the magnetic
(or electric) field properties at the nanoscale. The resulting images are
sensitive to the temporal as well as spatial variation in the fields created by
the sample. As an example we theoretically study two applications of this
technology; one from condensed matter physics, the other biophysics. The
individual components required to realise the simplest version of this device
(characterisation and measurement of qubits, nanoscale positioning) have
already been demonstrated experimentally.Comment: 11 pages, 5 low quality (but arXiv friendly) image
Quantum limits of localisation microscopy
Localisation microscopy of multiple weak, incoherent point sources with possibly different intensities in one spatial dimension is equivalent to estimating the amplitudes of a classical mixture of coherent states of a simple harmonic oscillator. This enables us to bound the multi-parameter covariance matrix for an unbiased estimator for the locations in terms of the quantum Fisher information matrix, which we obtained analytically. In the regime of arbitrarily small separations we find it to be no more than rank two—implying that no more than two independent parameters can be estimated irrespective of the number of point sources. We use the eigenvalues of the classical and quantum Fisher information matrices to compare the performance of spatial-mode demultiplexing and direct imaging in localisation microscopy with respect to the quantum limits
- …
