2,773 research outputs found

    Statistical Physics and Representations in Real and Artificial Neural Networks

    Full text link
    This document presents the material of two lectures on statistical physics and neural representations, delivered by one of us (R.M.) at the Fundamental Problems in Statistical Physics XIV summer school in July 2017. In a first part, we consider the neural representations of space (maps) in the hippocampus. We introduce an extension of the Hopfield model, able to store multiple spatial maps as continuous, finite-dimensional attractors. The phase diagram and dynamical properties of the model are analyzed. We then show how spatial representations can be dynamically decoded using an effective Ising model capturing the correlation structure in the neural data, and compare applications to data obtained from hippocampal multi-electrode recordings and by (sub)sampling our attractor model. In a second part, we focus on the problem of learning data representations in machine learning, in particular with artificial neural networks. We start by introducing data representations through some illustrations. We then analyze two important algorithms, Principal Component Analysis and Restricted Boltzmann Machines, with tools from statistical physics

    Emerging Consciousness as a Result of Complex-Dynamical Interaction Process

    Get PDF
    A quite general interaction process within a multi-component system is analysed by the extended effective potential method, liberated from usual limitations of perturbation theory or integrable model. The obtained causally complete solution of the many-body problem reveals the phenomenon of dynamic multivaluedness, or redundance, of emerging, incompatible system realisations and dynamic entanglement of system components within each realisation. The ensuing concept of dynamic complexity (and related intrinsic chaoticity) is absolutely universal and can be applied to the problem of consciousness that emerges now as a high enough, properly specified level of unreduced complexity of a suitable interaction process. This complexity level can be identified with the appearance of bound, permanently localised states in the multivalued brain dynamics from strongly chaotic states of unconscious intelligence, by analogy with classical behaviour emergence from quantum states at much lower levels of world dynamics. We show that the main properties of this dynamically emerging consciousness (and intelligence, at the preceding complexity level) correspond to empirically derived properties of natural versions and obtain causally substantiated conclusions about their artificial realisation, including the fundamentally justified paradigm of genuine machine consciousness. This rigorously defined machine consciousness is different from both natural consciousness and any mechanistic, dynamically single-valued imitation of the latter. We use then the same, truly universal concept of complexity to derive equally rigorous conclusions about mental and social implications of the machine consciousness paradigm, demonstrating its indispensable role in the next stage of civilisation development

    Spin glass theory and its new challenge: structured disorder

    Full text link
    This paper first describes, from a high level viewpoint, the main challenges that had to be solved in order to develop a theory of spin glasses in the last fifty years. It then explains how important inference problems, notably those occurring in machine learning, can be formulated as problems in statistical physics of disordered systems. However, the main questions that we face in the analysis of deep networks require to develop a new chapter of spin glass theory, which will address the challenge of structured data.Comment: 17 pages, one figur
    • 

    corecore