116,818 research outputs found

    Identification and validation of microsatellite markers in strawberry tree (Arbutusunedo L.)

    Get PDF
    Strawberry tree (Arbutus unedo L.), an evergreen shrub/small tree of the family Ericaceae, is a main constituent of the Mediterranean basin flora; although it is also found in southwestern Prance, Macaronesia, and Ireland. The small fruits are edible but mostly used for preparation of preserves and jams, and for liquors such as the Portuguese traditional "aguardente de medronho". Traditionally cultivated by small farmers, often in consociation with Quercus sp., strawberry tree is presently emerging as a new important fruit crop cultivated in large orchards by modern export-oriented enterprises. This change of paradigm requires a growing role of plant breeding, upstream of the production process. Genomic tools for this species are mostly limited to the chloroplast genome sequence and to genomic data described in this work. In order to identify strawberry tree microsatellite (SSR) loci we performed partial genome next-generation sequencing using the Ion Torrent technology. The sequenced similar to 24.6M nucleotides resulted in the identification of 1185 microsatellite markers mostly constituted by dinucleotide motifs. The relative amount of microsatellite dinucleotide motifs (AG/CT - 71.7%, AC/GT - 20.5%, AT/AT - 2.9%, and CG/CG - 0.3%) is similar to the one observed in other Ericaceae species. Among a tested sample of 40 SSR primer pairs, 20 amplified well-defined PCR products, 12 (30%) were validated as polymorphic. Used in our collaborative project for molecular identification of selected and improved clones, the identified SSR loci constitute a strong tool for a large panoply of applied and fundamental studies of this emerging fruit crop.Pluriannual Funding Program of the Portuguese National Foundation for Science and Technologyinfo:eu-repo/semantics/publishedVersio

    Development and characterization of tri- and tetra-nucleotide polymorphic microsatellite markers for skipjack tuna (Katsuwonus pelamis)

    Get PDF
    Skipjack tuna (katsuwonus pelamis) (SJT) is the largest tuna fishery in all the major oceans around the world, and the largest marine fishery in Sri Lanka. Knowledge of genetic population structure and effective population size of SJT in the Indian Ocean and other major oceans, however, is still lacking for better management practices and conservation strategies. We developed microsatellite genetic markers using SJT around Sri Lanka in the Indian Ocean, and characterise one tri- and seven tetra-nucleotide microsatellite loci isolated from enriched genomic libraries from SJT, to provide tools for addressing both conservation and fisheries management questions. An analysis of these eight microsatellite markers in two populations of SJT from eastern Sri Lanka (n = 44) and the Maldives Islands (n = 53) showed that all eight microsatellites were polymorphic with an average number of alleles per locus of 11.80 (range 5-27). Expected heterozygosities at marker loci ranged from 0.450 to 0.961. These markers are being used currently to characterise population structure and extent of natural gene flow in SJT populations from the eastern and western Indian Ocean. No significant linkage disequilibrium was detected among any loci pairs

    Microsatellite markers in Spanish lime (Melicoccus bijugatus Jacq., Sapindaceae), a neglected Neotropical fruit crop

    Get PDF
    Spanish lime (Melicoccus bijugatus Jacq.) is aNeotropical fruit tree cultivated, mainly, in orchards for self-consumption or local sale. The genus Melicoccus includes other nine species with edible fruits, some of these species are at risk of extinction. Like for the vast majority of tropical fruit trees, there is no information on the genetic diversity of Spanish lime and its related species, and this is mostly due to the lack of molecular markers. The objectives of this study were to present the first microsatellite markers developed for Spanish lime, testing its usefulness on a sample of cultivated accessions, as well as its transferability to Huaya India (M. oliviformis). To do this, we performed high-throughput sequencing of microsatellite-enriched libraries of Spanish lime using Roche 454, assembled 9567 DNA contig sequences and identified 10,117 microsatellites. After screening 384 of those microsatellites on four DNA samples, 31 polymorphic markers were used to screen 25 accessions of Spanish lime and five of Huaya India collected in Yucatan, Mexico. Genetic diversity was low in Spanish lime (A = 20.61, HE = 0.38) and similar for both sexes of this species. Neighbor-Joining and PCoA analyses clearly discriminated between the two Melicoccus species studied. Nine of the markers showed unique alleles for Huaya India. The set of microsatellite markers developed has a great potential to generate information in relation to conservation genetics, improvement of elite cultivars and breeding programs for Spanish lime and related species

    Measuring microsatellite conservation in mammalian evolution with a phylogenetic birth-death model.

    Get PDF
    Microsatellites make up ∼3% of the human genome, and there is increasing evidence that some microsatellites can have important functions and can be conserved by selection. To investigate this conservation, we performed a genome-wide analysis of human microsatellites and measured their conservation using a binary character birth--death model on a mammalian phylogeny. Using a maximum likelihood method to estimate birth and death rates for different types of microsatellites, we show that the rates at which microsatellites are gained and lost in mammals depend on their sequence composition, length, and position in the genome. Additionally, we use a mixture model to account for unequal death rates among microsatellites across the human genome. We use this model to assign a probability-based conservation score to each microsatellite. We found that microsatellites near the transcription start sites of genes are often highly conserved, and that distance from a microsatellite to the nearest transcription start site is a good predictor of the microsatellite conservation score. An analysis of gene ontology terms for genes that contain microsatellites near their transcription start site reveals that regulatory genes involved in growth and development are highly enriched with conserved microsatellites

    Microsatellite genotyping of apple (Malus × domestica Borkh.) genetic resources in the Netherlands: application in collection management and variety identification

    Get PDF
    A highly informative set of 16 microsatellite markers was used to fingerprint 695 apple accessions from eight Dutch collections. Among the total sample, 475 different genotypes were distinguished based on multi-locus microsatellite variation, revealing a potential redundancy within the total sample of 32%. The majority of redundancies were found between collections, rather than within collections. No single collection covered the total observed diversity well, as each collection consisted of about 50% of unique accessions. These findings reflected the fact that most collection holders focus on common Dutch varieties, as well as on region-specific diversity. Based on the diversity patterns observed, maintenance of genetic resources by a network of co-operating collection holders, rather than by collecting the total diversity in a single collection appears to be an efficient approach. Comparison of microsatellite and passport data showed that for many accessions the marker data did not provide support for the registered variety names. Verification of accessions showed that discrepancies between passport and molecular data were largely due to documentation and phenotypic determination errors. With the help of the marker data the varietal names of 45 accessions could be corrected. Microsatellite genotyping of apple appears to be an efficient tool in the management of collections and in variety identification. The development of a marker database was considered relevant as a reference instrument in variety identification and as a source of information about thus far unexplored diversity that could be of interest in the development of new apple varietie

    Abundant variation in microsatellites of the parasitic nematode Trichostrongylus tenuis and linkage to a tandem repeat

    Get PDF
    An understanding of how genes move between and within populations of parasitic nematodes is important in combating the evolution and spread of anthelmintic resistance. Much has been learned by studying mitochondrial DNA markers, but autosomal markers such as microsatellites have been applied to only a few nematode species, despite their many advantages for studying gene flow in eukaryotes. Here, we describe the isolation of 307 microsatellites from Trichostrongylus tenuis, an intestinal nematode of red grouse. High levels of variation were revealed at sixteen microsatellite loci (including three sex-lined loci) in 111 male T. tenuis nematodes collected from four hosts at a single grouse estate in Scotland (average He = 0.708; mean number of alleles = 12.2). A population genetic analysis detected no deviation from panmixia either between (F(ST) = 0.00) or within hosts (F(IS) = 0.015). We discuss the feasibility of developing microsatellites in parasitic nematodes and the problem of null alleles. We also describe a novel 146-bp repeat element, TteREP1, which is linked to two-thirds of the microsatellites sequenced and is associated with marker development failure. The sequence of TteREP1 is related to the TcREP-class of repeats found in several other trichostrongyloid species including Trichostrongylus colubriformis and Haemonchus contortus

    Development of Multiple Polymorphic Microsatellite Markers for Ceratina calcarata (Hymenoptera: Apidae) Using Genome-Wide Analysis

    Get PDF
    The small carpenter bee, Ceratina calcarata (Robertson), is a widespread native pollinator across eastern North America. The behavioral ecology and nesting biology of C. calcarata has been relatively well-studied and the species is emerging as a model organism for both native pollinator and social evolution research. C. calcarata is subsocial: reproductively mature females provide extended maternal care to their brood. As such, studies of C. calcarata may also reveal patterns of relatedness and demography unique to primitively social Hymenoptera. Here, we present 21 microsatellite loci, isolated from the recently completed C. calcarata genome. Screening in 39 individuals across their distribution revealed that no loci were in linkage disequilibrium, nor did any deviate significantly from Hardy-Weinberg following sequential Bonferroni correction. Allele count ranged from 2 to 14, and observed and expected heterozygosities ranged from 0.08 to 0.82 (mean 0.47) and 0.26 to 0.88 (mean 0.56), respectively. These markers will enable studies of population-wide genetic structuring across C. calcarata’s distribution. Such tools will also allow for exploration of between and within-colony relatedness in this subsocial native pollinator

    A comparison of SNPs and microsatellites as linkage mapping markers: lessons from the zebra finch (Taeniopygia guttata)

    Get PDF
    Background: Genetic linkage maps are essential tools when searching for quantitative trait loci (QTL). To maximize genome coverage and provide an evenly spaced marker distribution a combination of different types of genetic marker are sometimes used. In this study we created linkage maps of four zebra finch (Taeniopygia guttata) chromosomes (1, 1A, 2 and 9) using two types of marker, Single Nucleotide Polymorphisms (SNPs) and microsatellites. To assess the effectiveness and accuracy of each kind of marker we compared maps built with each marker type separately and with both types of marker combined. Linkage map marker order was validated by making comparisons to the assembled zebra finch genome sequence. Results: We showed that marker order was less reliable and linkage map lengths were inflated for microsatellite maps relative to SNP maps, apparently due to differing error rates between the two types of marker. Guidelines on how to minimise the effects of error are provided. In particular, we show that when combining both types of marker the conventional process of building linkage maps, whereby the most informative markers are added to the map first, has to be modified in order to improve map accuracy. Conclusions: When using multiple types and large numbers of markers to create dense linkage maps, the least error prone loci (SNPs) rather than the most informative should be used to create framework maps before the addition of other potentially more error prone markers (microsatellites). This raises questions about the accuracy of marker order and predicted recombination rates in previous microsatellite linkage maps which were created using the conventional building process, however, provided suitable error detection strategies are followed microsatellite-based maps can continue to be regarded as reasonably reliable
    corecore