5,033 research outputs found

    Dual stable isotope abundances unravel trophic position of estuarine nematodes

    Get PDF
    The role and quantitative importance of free-living nematodes in marine and estuarine soft sediments remain enigmatic for lack of empirical evidence on the feeding habits and trophic position of most nematode species. Here we use natural abundances of carbon and nitrogen stable isotopes of some abundant nematode species/genera from estuarine intertidal sediments to assess their trophic level and major food sources. In all stations, d15N of different dominant nematode species/genera spanned a range of 3.6 to 6.3 ppt, indicating that at least two trophic levels were represented. The large nematodes Enoplus brevis, Enoploides longispiculosus and Adoncholaimus fuscus consistently had high d15N, in line with mouth-morphology based predictions and empirical evidence on their predacious feeding modes. Daptonema sp., Metachromadora remanei, Praeacanthonchus punctatus and ‘Chromadoridae’ (dominated by Ptycholaimellus ponticus) had comparatively lower d15N, and d13C suggesting that microphytobenthos (MPB) is their major carbon source, although freshly sedimented particulate organic matter may also contribute to their nutrition in silty sediments. The trophic position of Sphaerolaimus sp., a genus with documented predacious feeding mode, was ambiguous. Ascolaimus elongatus had d15N signatures indicating a predacious ecology, which is at variance with expectations from existing feeding type classifications. Our study shows that—despite limitations imposed by the biomass requirements for EA-IRMS (elemental analyser—isotope ratio mass spectrometry) natural isotope abundances of carbon and nitrogen are powerful tools to unravel trophic structure within nematode communities. At the same time, the prominence of different trophic levels results in a large span of d15N, largely invalidating the use of nitrogen isotope abundances to assess food sources and trophic level of whole nematode communities

    Satellite remote sensing reveals a positive impact of living oyster reefs on microalgal biofilm development

    Get PDF
    Satellite remote sensing (RS) is routinely used for the large-scale monitoring of microphytobenthos (MPB) biomass in intertidal mudflats and has greatly improved our knowledge of MPB spatio-temporal variability and its potential drivers. Processes operating on smaller scales however, such as the impact of benthic macrofauna on MPB development, to date remain underinvestigated. In this study, we analysed the influence of wild Crassostrea gigas oyster reefs on MPB biofilm development using multispectral RS. A 30-year time series (1985-2015) combining high-resolution (30 m) Landsat and SPOT data was built in order to explore the relationship between C. gigas reefs and MPB spatial distribution and seasonal dynamics, using the normalized difference vegetation index (NDVI). Emphasis was placed on the analysis of a before-after control-impact (BACI) experiment designed to assess the effect of oyster killing on the surrounding MPB biofilms. Our RS data reveal that the presence of oyster reefs positively affects MPB biofilm development. Analysis of the historical time series first showed the presence of persistent, highly concentrated MPB patches around oyster reefs. This observation was supported by the BACI experiment which showed that killing the oysters (while leaving the physical reef structure, i.e. oyster shells, intact) negatively affected both MPB biofilm biomass and spatial stability around the reef. As such, our results are consistent with the hypothesis of nutrient input as an explanation for the MPB growth-promoting effect of oysters, whereby organic and inorganic matter released through oyster excretion and biodeposition stimulates MPB biomass accumulation. MPB also showed marked seasonal variations in biomass and patch shape, size and degree of aggregation around the oyster reefs. Seasonal variations in biomass, with higher NDVI during spring and autumn, were consistent with those observed on broader scales in other European mudflats. Our study provides the first multi-sensor RS satellite evidence of the promoting and structuring effect of oyster reefs on MPB biofilms

    Can thin-lipped mullet directly exploit the primary and detritic production of European macrotidal salt marshes?

    Get PDF
    Juveniles and adults (>100 mm) of Liza ramada colonize macrotidal salt marsh creeks of Mont Saint-Michel bay (France)between March and November, during spring tide floods (43% of the tides) and return to coastal waters during the ebb. This fish species actively feeds during its short stay in the creek (from 1 to 2 h). On average, each fish swallows sediment including living and inert organic matter, which amounts to 8% of its fresh body weight. Their diet is dominated by small benthic items (especially diatoms and salt marsh plant detritus), that correspond to the primary and detritic production of this macrotidal salt marsh creek. Despite very short submersion periods, mullets filter and ingest large quantities of sediment and concentrated organic matter (on average organic matter in stomach content is 31%) produced by these coastal wetlands. European salt marshes are thus shown to act as trophic areas for mullets, which are well adapted to this constraining habitat which is only flooded for short periods during spring tides

    Technical note: The effects of five different defaunation methods on biogeochemical properties of intertidal sediment

    Get PDF
    Various methods have been used to remove organisms from sediments to investigate structure and function of faunal assemblages in intertidal habitats. Nevertheless, little is known about how these treatments affect properties of the sediments themselves, although changing these properties may cause changes in the assemblages, independently of other hypotheses being tested. This study assesses the efficacy of defaunation and effect on selected biogeochemical properties of five different methods of defaunating soft muddy sediments in an estuary. The methods were removal and freezing of sediment, removal and oven-heating, freezing in situ with liquid N2, spraying with formalin and spraying with hydrogen peroxide. The first four of these methods have been used in previous studies, whilst the fifth was considered to be a potentially useful defaunator because it does not leave toxic residues. The first two methods required sediment to be brought back to the lab, disrupting the natural structure of the sediment; the last three were done in situ, with much less disturbance.  Variables measured to assess effects of the treatments on the sediment were amount of water, grain size, total carbohydrate, suspension index (relative erosion rate), erosion threshold, chlorophyll a and b, colloidal carbohydrate, Fo (minimal fluorescence) and Fv/ Fm (photosynthetic yield). There were no significant effects of any treatment on the first four variables. For the others, effects of defaunation varied from treatment to treatment and with time after treatment. Generally, the greatest disturbance was to the microphytobenthos (MPB, measured by chlorophyll and fluorescence) and related variables. For most treatments, recovery was rapid, but the effects of formalin and H2O2 persisted for a few days. Effects on physical properties of the sediment were mostly minor and insignificant. Removal and freezing or heating, however, caused major changes to the sediments because of the disturbances involved. Choosing the appropriate method of defaunation is very important if interpretations are not to be confounded between the effects of defaunation per se and any effects of changes to other biota (such as microphytobenthos) and/or the properties of sediments caused by the method used to defaunate experimental areas

    Benthic trophic interactions in an Antarctic shallow water ecosystem affected by recent glacier retreat

    Get PDF
    The western Antarctic Peninsula is experiencing strong environmental changes as a consequence of ongoing regional warming. Glaciers in the area are retreating rapidly and increased sediment-laden meltwater runoff threatens the benthic biodiversity at shallow depths. We identified three sites with a distinct glacier-retreat related history and different levels of glacial influence in the inner part of Potter Cove (King George Island, South Shetland Islands), a fjord-like embayment impacted since the 1950s by a tidewater glacier retreat. We compared the soft sediment meio- and macrofauna isotopic niche widths (delta C-13 and delta N-15 stable isotope analysis) at the three sites to investigate possible glacier retreat-related influences on benthic trophic interactions. The isotopic niches were locally shaped by the different degrees of glacier retreat-related disturbance within the Cove. Wider isotopic niche widths were found at the site that has become ice-free most recently, and narrower niches at the older ice-free sites. At an intermediate state of glacier retreat-related disturbance (e.g. via ice-growler scouring) species with different strategies could settle. The site at the earliest stage of post-retreat development was characterized by an assemblage with lower trophic redundancy. Generally, the isotopic niche widths increased with increasing size spectra of organisms within the community, excepting the youngest assemblage, where the pioneer colonizer meiofauna size class displayed the highest isotopic niche width. Meiofauna at all sites generally occupied positions in the isotopic space that suggested a detrital-pool food source and/or the presence of predatory taxa. In general ice scour and glacial impact appeared to play a two-fold role within the Cove: i) either stimulating trophic diversity by allowing continuous re-colonization of meiofaunal species or, ii) over time driving the benthic assemblages into a more compact trophic structure with increased connectedness and resource recycling

    Temperature affects the use of storage fatty acids as energy source in a benthic copepod (Platychelipus littoralis, Harpacticoida)

    Get PDF
    The utilization of storage lipids and their associated fatty acids (FA) is an important means for organisms to cope with periods of food shortage, however, little is known about the dynamics and FA mobilization in benthic copepods (order Harpacticoida). Furthermore, lipid depletion and FA mobilization may depend on the ambient temperature. Therefore, we subjected the temperate copepod Platychelipus littoralis to several intervals (3, 6 and 14 days) of food deprivation, under two temperatures in the range of the normal habitat temperature (4, 15 degrees C) and under an elevated temperature (24 degrees C), and studied the changes in FA composition of storage and membrane lipids. Although bulk depletion of storage FA occurred after a few days of food deprivation under 4 degrees C and 15 degrees C, copepod survival remained high during the experiment, suggesting the catabolization of other energy sources. Ambient temperature affected both the degree of FA depletion and the FA mobilization. In particular, storage FA were more exhausted and FA mobilization was more selective under 15 degrees C compared with 4 degrees C. In contrast, depletion of storage FA was limited under an elevated temperature, potentially due to a switch to partial anaerobiosis. Food deprivation induced selective DHA retention in the copepod's membrane, under all temperatures. However, prolonged exposure to heat and nutritional stress eventually depleted DHA in the membranes, and potentially induced high copepod mortality. Storage lipids clearly played an important role in the short-term response of the copepod P. littoralis to food deprivation. However, under elevated temperature, the use of storage FA as an energy source is compromised

    Changes in microphytobenthos fluorescence over a tidal cycle: implications for sampling designs

    Get PDF
    Intertidal microphytobenthos (MPB) are important primary producers and provide food for herbivores in soft sediments and on rocky shores. Methods of measuring MPB biomass that do not depend on the time of collection relative to the time of day or tidal conditions are important in any studies that need to compare temporal or spatial variation, effects of abiotic factors or activity of grazers. Pulse amplitude modulated (PAM) fluorometry is often used to estimate biomass of MPB because it is a rapid, non-destructive method, but it is not known how measures of fluorescence are altered by changing conditions during a period of low tide. We investigated this experimentally using in situ changes in minimal fluorescence (F) on a rocky shore and on an estuarine mudflat around Sydney (Australia), during low tides. On rocky shores, the time when samples are taken during low tide had little direct influence on measures of fluorescence as long as the substratum is dry. Wetness from wave-splash, seepage from rock pools, run-off, rainfall, etc., had large consequences for any comparisons. On soft sediments, fluorescence was decreased if the sediment dried out, as happens during low-spring tides on particularly hot and dry days. Surface water affected the response of PAM and therefore measurements used to estimate MPB, emphasising the need for care to ensure that representative sampling is done during low tide

    Human pressures on two estuaries of the Iberian Peninsula are reflected in food web structure

    Get PDF
    As a result of the increased urban and agricultural development in coastal environments, estuaries are among the most modified and threatened aquatic ecosystems. This study used stable isotopes to examine the effects of human impacts by contrasting the food web structures of two Iberian estuaries exposed to different degrees of human pressure. More complex feeding pathways were found in the more altered estuary (Guadalquivir). Greater spread among species along the carbon axis suggests that the primary consumers exploit organic matter with various origins, whereas different nitrogen signals of the secondary consumers suggest that they feed on different suites of prey. In contrast, the similar isotopic signals of secondary consumers in the relatively little influenced estuary (Guadiana) suggests similarity in diet composition and feeding on the same organic matter sources. Understanding trophic interactions in estuaries is vital for defining proper management and conservation, and the preliminary data provided here are one step in this direction
    corecore