4 research outputs found

    Well-posedness of 2D and 3D swimming models in incompressible fluids governed by Navier--Stokes equations

    Full text link
    We introduce and investigate the wellposedness of two models describing the self-propelled motion of a "small bio-mimetic swimmer" in the 2D and 3D incompressible fluids modeled by the Navier-Stokes equations. It is assumed that the swimmer's body consists of finitely many subsequently connected parts, identified with the fluid they occupy, linked by the rotational and elastic forces. The swimmer employs the change of its shape, inflicted by respective explicit internal forces, as the means for self-propulsion in a surrounding medium. Similar models were previously investigated in [15]-[19] where the fluid was modeled by the liner nonstationary Stokes equations. Such models are of interest in biological and engineering applications dealing with the study and design of propulsion systems in fluids and air.Comment: 28 pages, 5 figures, Corresponding author: Alexandre Khapalov, Department of Mathematics, Washington State University, USA (email: [email protected]

    A Coin Vibrational Motor Swimming at Low Reynolds Number

    Get PDF
    Low-cost coin vibrational motors, used in haptic feedback, exhibit rotational internal motion inside a rigid case. Because the motor case motion exhibits rotational symmetry, when placed into a fluid such as glycerin, the motor does not swim even though its oscillatory motions induce steady streaming in the fluid. However, a piece of rubber foam stuck to the curved case and giving the motor neutral buoyancy also breaks the rotational symmetry allowing it to swim. We measured a 1 cm diameter coin vibrational motor swimming in glycerin at a speed of a body length in 3 seconds or at 3 mm/s. The swim speed puts the vibrational motor in a low Reynolds number regime similar to bacterial motility, but because of the oscillations of the motor it is not analogous to biological organisms. Rather the swimming vibrational motor may inspire small inexpensive robotic swimmers that are robust as they contain no external moving parts. A time dependent Stokes equation planar sheet model suggests that the swim speed depends on a steady streaming velocity V stream ~ Re 1/2s U 0 where U 0 is the velocity of surface oscillations, and streaming Reynolds number Re s = U 20/(ων) for motor angular frequency ω and fluid kinematic viscosity ν

    Swim-like motion of bodies immersed in an ideal fluid

    Get PDF
    The connection between swimming and control theory is attracting increasing attention in the recent literature. Starting from an idea of Alberto Bressan [A. Bressan, Discrete Contin. Dyn. Syst. 20 (2008) 1\u201335]. we study the system of a planar body whose position and shape are described by a finite number of parameters, and is immersed in a 2-dimensional ideal and incompressible fluid in terms of gauge field on the space of shapes. We focus on a class of deformations measure preserving which are diffeomeorphisms whose existence is ensured by the Riemann Mapping Theorem. After making the first order expansion for small deformations, we face a crucial problem: the presence of possible non vanishing initial impulse. If the body starts with zero initial impulse we recover the results present in literature (Marsden, Munnier and oths). If instead the body starts with an initial impulse different from zero, the swimmer can self-propel in almost any direction if it can undergo shape changes without any bound on their velocity. This interesting observation, together with the analysis of the controllability of this system, seems innovative. Mathematics Subject Classification. 74F10, 74L15, 76B99, 76Z10. Received June 14, 2016. Accepted March 18, 2017. 1. Introduction In this work we are interested in studying the self-propulsion of a deformable body in a fluid. This kind of systems is attracting an increasing interest in recent literature. Many authors focus on two different type of fluids. Some of them consider swimming at micro scale in a Stokes fluid [2,4\u20136,27,35,40], because in this regime the inertial terms can be neglected and the hydrodynamic equations are linear. Others are interested in bodies immersed in an ideal incompressible fluid [8,18,23,30,33] and also in this case the hydrodynamic equations turn out to be linear. We deal with the last case, in particular we study a deformable body -typically a swimmer or a fish- immersed in an ideal and irrotational fluid. This special case has an interesting geometric nature and there is an attractive mathematical framework for it. We exploit this intrinsically geometrical structure of the problem inspired by [32,39,40], in which they interpret the system in terms of gauge field on the space of shapes. The choice of taking into account the inertia can apparently lead to a more complex system, but neglecting the viscosity the hydrodynamic equations are still linear, and this fact makes the system more manageable. The same fluid regime and existence of solutions of these hydrodynamic equations has been studied in [18] regarding the motion of rigid bodies
    corecore