3,441 research outputs found
A Framework for Integrating Transportation Into Smart Cities
In recent years, economic, environmental, and political forces have quickly given rise to “Smart Cities” -- an array of strategies that can transform transportation in cities. Using a multi-method approach to research and develop a framework for smart cities, this study provides a framework that can be employed to: Understand what a smart city is and how to replicate smart city successes; The role of pilot projects, metrics, and evaluations to test, implement, and replicate strategies; and Understand the role of shared micromobility, big data, and other key issues impacting communities.
This research provides recommendations for policy and professional practice as it relates to integrating transportation into smart cities
Recommended from our members
Micromobility evolution and expansion: Understanding how docked and dockless bikesharing models complement and compete – A case study of San Francisco
Shared micromobility – the shared use of bicycles, scooters, or other low-speed modes – is an innovative transportation strategy growing across the United States that includes various service models such as docked, dockless, and e-bike service models. This research focuses on understanding how docked bikesharing and dockless e-bikesharing models complement and compete with respect to user travel behaviors. To inform our analysis, we used two datasets from February 2018 of Ford GoBike (docked) and JUMP (dockless electric) bikesharing trips in San Francisco. We employed three methodological approaches: 1) travel behavior analysis, 2) discrete choice analysis with a destination choice model, and 3) geospatial suitability analysis based on the Spatial Temporal Economic Physiological Social (STEPS) to Transportation Equity framework. We found that dockless e-bikesharing trips were longer in distance and duration than docked trips. The average JUMP trip was about a third longer in distance and about twice as long in duration than the average GoBike trip. JUMP users were far less sensitive to estimated total elevation gain than were GoBike users, making trips with total elevation gain about three times larger than those of GoBike users, on average. The JUMP system achieved greater usage rates than GoBike, with 0.8 more daily trips per bike and 2.3 more miles traveled on each bike per day, on average. The destination choice model results suggest that JUMP users traveled to lower-density destinations, and GoBike users were largely traveling to dense employment areas. Bike rack density was a significant positive factor for JUMP users. The location of GoBike docking stations may attract users and/or be well-placed to the destination preferences of users. The STEPS-based bikeability analysis revealed opportunities for the expansion of both bikesharing systems in areas of the city where high-job density and bike facility availability converge with older resident populations
MIRAI Architecture for Heterogeneous Network
One of the keywords that describe next-generation wireless communications is "seamless." As part of the e-Japan Plan promoted by the Japanese Government, the Multimedia Integrated Network by Radio Access Innovation project has as its goal the development of new technologies to enable seamless integration of various wireless access systems for practical use by 2005. This article describes a heterogeneous network architecture including a common tool, a common platform, and a common access. In particular, software-defined radio technologies are used to develop a multiservice user terminal to access different wireless networks. The common platform for various wireless networks is based on a wireless-supporting IPv6 network. A basic access network, separated from other wireless access networks, is used as a means for wireless system discovery, signaling, and paging. A proof-of-concept experimental demonstration system is available
Recommended from our members
Investigating the Influence of Dockless Electric Bike-share on Travel Behavior, Attitudes, Health, and Equity
Cities throughout the world have implemented bike-share systems as a strategy for expanding mobility options. While these have attracted substantial ridership, little is known about their influence on travel behavior more broadly. The aim of this study was to examine how shared electric bikes (e-bikes) and e-scooters influence individual travel attitudes and behavior, and related outcomes of physical activity and transportation equity. The study involved a survey in the greater Sacramento area of 1959 households before (Spring 2016) and 988 after (Spring 2019) the Summer 2018 implementation of the e-bike and e-scooterservice operated by Jump, Inc., as well as a direct survey of 703 e-bike users (in Fall 2018 & Spring 2019). Among householdrespondents, 3–13% reported having used the service. Of e-bike share trips, 35% substituted for car travel, 30% substituted for walking, and 5% were used to connect to transit. Before- and after-household surveys indicated a slight decrease in self-reported (not objectively measured) median vehicle miles traveled and slight positive shifts in attitudes towards bicycling. Service implementation was associated with minimal changes in health in terms of physical activity and numbers of collisions. The percentages of users by self-reported student status, race, and income suggest a fairly equitable service distribution by these parameters, but each survey under-represents racial minorities and people with low incomes. Therefore, the study is inconclusive about how this service impacts those most in need. Furthermore, aggregated socio-demographics of areas where trips started or ended did not correlate with, and therefore are not reliable indicators of, the socio-demographics of e-bike-share users. Thus, targeted surveying of racial minorities and people with low-incomes is needed to understand bike-share equity
Earnings Mobility in Times of Growth and Decline: Argentina from 1996 to 2003
In recent years, the economy of Argentina has experienced both rapid economic growth and severe economic decline. In this paper, we use a series of one-year long panels to study who gained the most in pesos when the economy grew and who lost the most in pesos when the economy contracted. Various considerations led us to expect that mobility would be divergent—that is, that the individuals who started with the highest initial earnings would enjoy the largest earnings gains in pesos. Contrary to expectations and for a wide range of specifications, mobility is found to be mostly convergent, sometimes neutral, and never divergent. We then demonstrate how generally rising inequality and convergent mobility can be reconciled. Thus, the panel data analysis performed in this paper presents a picture of economic growth that is much more pro-poor than what one gets from cross-sectional inequality comparisons
Mobile Networking
We point out the different performance problems that need to be addressed when considering mobility in IP networks. We also define the reference architecture and present a framework to classify the different solutions for mobility management in IP networks. The performance of the major candidate micro-mobility solutions is evaluated for both real-time (UDP) and data (TCP) traffic through simulation and by means of an analytical model. Using these models we compare the performance of different mobility management schemes for different data and real-time services and the network resources that are needed for it. We point out the problems of TCP in wireless environments and review some proposed enhancements to TCP that aim at improving TCP performance. We make a detailed study of how some of micro-mobility protocols namely Cellular IP, Hawaii and Hierarchical Mobile IP affect the behavior of TCP and their interaction with the MAC layer. We investigate the impact of handoffs on TCP by means of simulation traces that show the evolution of segments and acknowledgments during handoffs.Publicad
Recommended from our members
What Can Be Done About Falling Transit Ridership in the Bay Area?
Chapter 3 - Mobility on demand (MOD) and mobility as a service (MaaS): early understanding of shared mobility impacts and public transit partnerships
Technology is changing the way we move and reshaping cities and society. Shared and on-demand mobility represent notable transportation shifts in the 21st century. In recent years, mobility on demand (MOD)—where consumers access mobility, goods, and services on-demand by dispatching shared modes, courier services, public transport, and other innovative strategies—has grown rapidly due to technological advancements; changing consumer preferences; and a range of economic, environmental, and social factors. New attitudes toward sharing, MOD, and mobility as a service (MaaS) are changing traveler behavior and creating new opportunities and challenges for public transportation. This chapter discusses similarities and differences between the evolving concepts of MaaS and MOD. Next, it characterizes the range of existing public transit and MOD service models and enabling partnerships. The chapter also explores emerging trends impacting public transportation. While vehicle automation could result in greater public transit competition in the future, it could also foster new opportunities for transit enhancements (e.g., microtransit services, first- and last-mile connections, reduced operating costs). The chapter concludes with a discussion of how MOD/MaaS partnerships and automation could enable the public transit industry to reinvent itself, making it more attractive and competitive with private vehicle ownership and use
- …
