31 research outputs found

    Use of a micromanipulator system (NeuRobot) in endoscopic neurosurgery

    Get PDF
    NeuRobot, a micromanipulator system with a rigid neuroendoscope and three micromanipulators, was developed for less invasive and telecontrolled neurosurgery. This system can be used to perform sophisticated surgical procedures through a small, 10-mm-diameter, window. The present study was performed to evaluate the feasibility of using NeuRobot in neuroendoscopy. Four different intraventricular neurosurgical procedures were simulated in three fixed cadaver heads using NeuRobot: (1) fenestration of the floor of the third ventricle; (2) fenestration of the septum pellucidum; (3) biopsy of the thalamus; and (4) biopsy of the choroid plexus of the lateral ventricle. Each procedure required less than 2 min, and all procedures were performed accurately. After these surgical simulations, a third ventriculostomy was carried out safely and adequately in a patient with obstructive hydrocephalus due to a midbrain venous angioma. Our results confirmed that NeuRobot is applicable to lesions in which conventional endoscopic neurosurgery is indicated. Furthermore, NeuRobot can perform more complex surgical procedures than a conventional neuroendoscope because of its maneuverability and stability. NeuRobot will become a useful neurosurgical tool for dealing with lesions that are difficult to treat by conventional neuroendoscopic surgery.ArticleJOURNAL OF CLINICAL NEUROSCIENCE. 19(11):1553-1557 (2012)journal articl

    Use of a micromanipulator system (NeuRobot) in endoscopic neurosurgery

    Get PDF
    NeuRobot, a micromanipulator system with a rigid neuroendoscope and three micromanipulators, was developed for less invasive and telecontrolled neurosurgery. This system can be used to perform sophisticated surgical procedures through a small, 10-mm-diameter, window. The present study was performed to evaluate the feasibility of using NeuRobot in neuroendoscopy. Four different intraventricular neurosurgical procedures were simulated in three fixed cadaver heads using NeuRobot: (1) fenestration of the floor of the third ventricle; (2) fenestration of the septum pellucidum; (3) biopsy of the thalamus; and (4) biopsy of the choroid plexus of the lateral ventricle. Each procedure required less than 2 min, and all procedures were performed accurately. After these surgical simulations, a third ventriculostomy was carried out safely and adequately in a patient with obstructive hydrocephalus due to a midbrain venous angioma. Our results confirmed that NeuRobot is applicable to lesions in which conventional endoscopic neurosurgery is indicated. Furthermore, NeuRobot can perform more complex surgical procedures than a conventional neuroendoscope because of its maneuverability and stability. NeuRobot will become a useful neurosurgical tool for dealing with lesions that are difficult to treat by conventional neuroendoscopic surgery.ArticleJOURNAL OF CLINICAL NEUROSCIENCE. 19(11):1553-1557 (2012)journal articl

    Роботы в краниальной нейрохирургии, эволюция за 35 лет

    Get PDF
    We reviewed the experience of robotic devices in cranial neurosurgery for 35 years. The brief history is represented, prerequisites for robotics development are specified. The most popular devices are listed, which are used for surgical instruments positioning and remote manipulations. We pointed key robotic features, main results of their application, showed advantages, shortcomings and ways to resolve some problems. The accurateness of robotic systems is shown in comparison with frame-based stereotactic surgery. The main trends in robotic development in the future are described as well.В обзоре литературы описан 35-летний опыт работы с роботами в краниальной нейрохирургии. Представлен краткий исторический очерк и указаны предпосылки развития робототехники. Перечислены наиболее известные устройства, используемые для позиционирования хирургических инструментов и дистанционных манипуляций. Указаны ключевые особенности роботов, основные результаты их применения, представлены преимущества, недостатки и пути решения некоторых проблем. Показана точность роботизированных систем в сравнении с рамным стереотаксисом. В завершение приведены основные тенденции роботостроения в будущем

    Robotic Neurosurgery

    Get PDF

    Review of robotic technology for keyhole transcranial stereotactic neurosurgery

    Get PDF
    The research of stereotactic apparatus to guide surgical devices began in 1908, yet a major part of today's stereotactic neurosurgeries still rely on stereotactic frames developed almost half a century ago. Robots excel at handling spatial information, and are, thus, obvious candidates in the guidance of instrumentation along precisely planned trajectories. In this review, we introduce the concept of stereotaxy and describe a standard stereotactic neurosurgery. Neurosurgeons' expectations and demands regarding the role of robots as assistive tools are also addressed. We list the most successful robotic systems developed specifically for or capable of executing stereotactic neurosurgery. A critical review is presented for each robotic system, emphasizing the differences between them and detailing positive features and drawbacks. An analysis of the listed robotic system features is also undertaken, in the context of robotic application in stereotactic neurosurgery. Finally, we discuss the current perspective, and future directions of a robotic technology in this field. All robotic systems follow a very similar and structured workflow despite the technical differences that set them apart. No system unequivocally stands out as an absolute best. The trend of technological progress is pointing toward the development of miniaturized cost-effective solutions with more intuitive interfaces.This work has been partially financed by the NETT Project (FP7-PEOPLE-2011-ITN-289146), ACTIVE Project (FP7-ICT-2009-6-270460), and FCT PhD grant (ref. SFRH/BD/86499/2012)

    Force-detecting gripper and force feedback system for neurosurgery applications

    Get PDF
    Purpose For the application of less invasive robotic neurosurgery to the resection of deep-seated tumors, a prototype system of a force-detecting gripper with a flexible micromanipulator and force feedback to the operating unit will be developed. Methods Gripping force applied on the gripper is detected by strain gauges attached to the gripper clip. The signal is transmitted to the amplifier by wires running through the inner tube of the manipulator. Proportional force is applied on the finger lever of the operating unit by the surgeon using a bilateral control program. A pulling force experienced by the gripper is also detected at the gripper clip. The signal for the pulling force is transmitted in a manner identical to that mentioned previously, and the proportional torque is applied on the touching roller of the finger lever of the operating unit. The surgeon can feel the gripping force as the resistance of the operating force of the finger and can feel the pulling force as the friction at the finger surface. Results A basic operation test showed that both the gripping force and pulling force were clearly detected in the gripping of soft material and that the operator could feel the gripping force and pulling force at the finger lever of the operating unit. Conclusions A prototype of the force feedback in the microgripping manipulator system has been developed. The system will be useful for removing deep-seated brain tumors in future master-slave-type robotic neurosurgery. © 2013 CARS

    Robotics in neurosurgery: A literature review

    Get PDF
    Robotic surgery has been the forte of minimally invasive stereo-tactic procedures for some decades now. Ongoing advancements and evolutionary developments require substantial evidence to build the consensus about its efficacy in the field of neurosurgery. Main obstacle in obtaining successful results in neurosurgery is fine neural structures and other anatomical limitations. Currently, human rationalisation and robotic precision works in symbiosis to provide improved results. We reviewed the current data about recent interventions. Robots are capable of providing virtual data, superior spatial resolution and geometric accuracy, superior dexterity, faster manoeuvring and non-fatigability with steady motion. Robotic surgery also allows simulation of virtual procedures which turn out to be of great succour for young apprentice surgeons to practise their surgical skills in a safe environment. It also allows senior professionals to rehearse difficult cases before involving into considerable risky procedures
    corecore