6,327 research outputs found

    Market-based Control of Air-Conditioning Loads with Switching Constraints for Providing Ancillary Services

    Full text link
    Air-conditioning loads (ACLs) are among the most promising demand side resources for their thermal storage capacity and fast response potential. This paper adopts the principle of market-based control (MBC) for the ACLs to participate in the ancillary services. The MBC method is suitable for the control of distributed ACLs because it can satisfy diversified requirements, reduce the communication bandwidth and protect users' privacy. The modified bidding and clearing strategies proposed in this paper makes it possible to adjust the switching frequency and strictly satisfy the lockout time constraint for mechanical wear reduction and device protection, without increasing the communication traffic and computational cost of the control center. The performance of the ACL cluster in two typical ancillary services is studied to demonstrate the effect of the proposed method. The case studies also investigate how the control parameters affect the response performance, comfort level and switching frequency.Comment: 5 pages, conferenc

    Parameter Optimisation of a Virtual Synchronous Machine in a Microgrid

    Full text link
    Parameters of a virtual synchronous machine in a small microgrid are optimised. The dynamical behaviour of the system is simulated after a perturbation, where the system needs to return to its steady state. The cost functional evaluates the system behaviour for different parameters. This functional is minimised by Parallel Tempering. Two perturbation scenarios are investigated and the resulting optimal parameters agree with analytical predictions. Dependent on the focus of the optimisation different optima are obtained for each perturbation scenario. During the transient the system leaves the allowed voltage and frequency bands only for a short time if the perturbation is within a certain range.Comment: 17 pages, 5 figure

    FMI Compliant Approach to Investigate the Impact of Communication to Islanded Microgrid Secondary Control

    Full text link
    In multi-master islanded microgrids, the inverter controllers need to share the signals and to coordinate, in either centralized or distributed way, in order to operate properly and to assure a good functionality of the grid. The central controller is used in centralized strategy. In distributed control, Multi-agent system (MAS) is considered to be a suitable solution for coordination of such system. However the latency and disturbance of the network may disturb the communication from central controller to local controllers or among agents or and negatively influence the grid operation. As a consequence, communication aspects need to be properly addressed during the control design and assessment. In this paper, we propose a holistic approach with co-simulation using Functional Mockup Interface (FMI) standard to validate the microgrid control system taking into account the communication network. A use-case of islanded microgrid frequency secondary control with MAS under consensus algorithm is implemented to demonstrate the impact of communication and to illustrate the proposed holistic approach.Comment: Proceedings of the IEEE PES ISGT Asia 2017 conferenc

    Measurement-based network clustering for active distribution systems

    Get PDF
    ©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper presents a network clustering (NC) method for active distribution networks (ADNs). Following the outage of a section of an ADN, the method identifies and forms an optimum cluster of microgrids within the section. The optimum cluster is determined from a set of candidate microgrid clusters by estimating the following metrics: total power loss, voltage deviations, and minimum load shedding. To compute these metrics, equivalent circuits of the clusters are estimated using measured data provided by phasor measurement units (PMUs). Hence, the proposed NC method determines the optimum microgrid cluster without requiring information about the network’s topology and its components. The proposed method is tested by simulating a study network in a real-time simulator coupled to physical PMUs and a prototype algorithm implementation, also executing in real time.Peer ReviewedPostprint (author's final draft

    Improving the Scalability of a Prosumer Cooperative Game with K-Means Clustering

    Full text link
    Among the various market structures under peer-to-peer energy sharing, one model based on cooperative game theory provides clear incentives for prosumers to collaboratively schedule their energy resources. The computational complexity of this model, however, increases exponentially with the number of participants. To address this issue, this paper proposes the application of K-means clustering to the energy profiles following the grand coalition optimization. The cooperative model is run with the "clustered players" to compute their payoff allocations, which are then further distributed among the prosumers within each cluster. Case studies show that the proposed method can significantly improve the scalability of the cooperative scheme while maintaining a high level of financial incentives for the prosumers.Comment: 6 pages, 4 figures, 2 tables. Accepted to the 13th IEEE PES PowerTech Conference, 23-27 June 2019, Milano, Ital

    Cooperative energy management for a cluster of households prosumers

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThe increment of electrical and electronic appliances for improving the lifestyle of residential consumers had led to a larger demand of energy. In order to supply their energy requirements, the consumers have changed the paradigm by integrating renewable energy sources to their power grid. Therefore, consumers become prosumers in which they internally generate and consume energy looking for an autonomous operation. This paper proposes an energy management system for coordinating the operation of distributed household prosumers. It was found that better performance is achieved when cooperative operation with other prosumers in a neighborhood environment is achieved. Simulation and experimental results validate the proposed strategy by comparing the performance of islanded prosumers with the operation in cooperative modePeer ReviewedPostprint (author's final draft
    corecore