18,082 research outputs found
Characterization of 1D photonic crystal nanobeam cavities using curved microfiber
We investigate high-Q, small mode volume photonic crystal nanobeam cavities using a curved, tapered optical microfiber loop. The strength of the coupling between the cavity and the microfiber loop is shown to depend on the contact position on the nanobeam, angle between the nanobeam and the microfiber, and polarization of the light in the fiber. The results are compared to a resonant scattering measurement
Optical properties of a low-loss polarization maintaining microfiber
A polarization preserving single-mode microfiber was successfully fabricated by a flame brushing method. A polarization extinction ratio of 16dB is typically maintained through the device with excess loss of 0.2dB
Disinfectant Performance of a Chlorine Regenerable Antibacterial Microfiber Fabric as a Reusable Wiper.
Rechargeable disinfectant performance of a microfiber fabric grafted with a halamine precursor, 3-allyl-5,5-dimethylhydantoin (ADMH), was tested in an actual use situation in a university student dining hall. The precursor was successfully incorporated onto the surfaces of polyester fibers by using a radical graft polymerization process through a commercial finishing facility. The N⁻H bonds of ADMH moieties on the fibers can be converted to biocidal N⁻Cl bonds, when the fabrics are washed in a diluted chlorine bleach containing 3000 ppm available chlorine, providing a refreshable disinfectant function. By wiping the surfaces of 30 tables (equivalent to 18 m²) with wet chlorinated fabrics, both Staphylococcus aureus and Escherichia coli in concentrations of 10⁵ CFU/mL were totally killed in a contact time of 3 min. The disinfectant properties of the fabrics were still superior after 10 times successive machine washes (equivalent to fifty household machine washes), and rechargeable after wiping 30 tables before each recharge. Recharging conditions, such as temperature, time, active chlorine concentration and pH value of sodium hypochlorite solution, as well as the addition of a detergent, were studied. The product has the potential to improve public safety against biological contaminations and the transmission of diseases
Whispering gallery modes in optical fibers based on reflectionless potentials
We consider an optical fiber with nanoscale variation of the effective fiber
radius supporting whispering gallery modes slowly propagating along the fiber,
and reveal that the radius variation can be designed to support reflectionless
propagation of these modes. We show that reflectionless modulations can realize
control of transmission amplitude and temporal delay, while enabling close
packing due to the absence of cross-talk, in contrast to conventional
potentials.Comment: 4 pages, 3 figure
Growth of aligned carbon nanotubes on carbon microfibers by dc plasma-enhanced chemical vapor deposition
It is shown that unidirectionally aligned carbon nanotubes can be grown on electrically conductive network of carbon microfibers via control of buffer layer material and applied electric field during dc plasma chemical vapor deposition growth. Ni catalyst deposition on carbon microfiber produces relatively poorly aligned nanotubes with significantly varying diameters and lengths obtained. The insertion of Ti 5 nm thick underlayer between Ni catalyst layer and C microfiber substrate significantly alters the morphology of nanotubes, resulting in much better aligned, finer diameter, and longer array of nanotubes. This beneficial effect is attributed to the reduced reaction between Ni and carbon paper, as well as prevention of plasma etching of carbon paper by inserting a Ti buffer layer. Such a unidirectionally aligned nanotube structure on an open-pore conductive substrate structure may conveniently be utilized as a high-surface-area base electrodes for fuel cells, batteries, and other electrochemical and catalytic reactions
Microfibers for juice analysis by solid-phase microextraction.
In view of the interest in analyzing volatile compounds by SPME, the following five microfibers were tested, polydimethylsiloxane; polyacrylate; polydimethylsiloxane/divinylbenzene; carboxen/polydimethylsiloxane, and carbowax/divinylbenzene, to select the one which presents the best performance for the adsorption of the volatile compounds present in the headspace of acid lime juice samples. Sample stabilization time variations (30 and 60 minutes) were assessed as well the addition of NaCl to the samples. It was verified that the chromatogram with the most adsorbed volatile compounds was obtained with PDMS/DVB microfiber at 30 minutes and the addition of 0.2 g NaCl
- …
