33,539 research outputs found

    Universal Algorithm for Simulating and Evaluating Cyclic Voltammetry at Macroporous Electrodes by Considering Random Arrays of Microelectrodes

    Get PDF
    An algorithm for the simulation and evaluation of cyclic voltammetry (CV) at macroporous electrodes such as felts, foams, and layered structures is presented. By considering 1D, 2D, and 3D arrays of electrode sheets, cylindrical microelectrodes, hollow‐cylindrical microelectrodes, and hollowspherical microelectrodes the internal diffusion domains of the macroporous structures are approximated. A universal algorithm providing the timedependent surface concentrations of the electrochemically active species, required for simulating cyclic voltammetry responses of the individual planar, cylindrical, and spherical microelectrodes, is presented as well. An essential ingredient of the algorithm, which is based on Laplace integral transformation techniques, is the use of a modified Talbot contour for the inverse Laplace transformation. It is demonstrated that first‐order homogeneous chemical kinetics preceding and/or following the electrochemical reaction and electrochemically active species with non‐equal diffusion coefficients can be included in all diffusion models as well. The proposed theory is supported by experimental data acquired for a reference reaction, the oxidation of [Fe(CN)6]4− at platinum electrodes as well as for a technically relevant reaction, the oxidation of VO2+ at carbon felt electrodes. Based on our calculation strategy, we provide a powerful open source tool for simulating and evaluating CV data implemented into a Python graphical user interface (GUI)

    Electrochemical microsensors for cutaneous surface analysis: Application to the determination of pH and the antioxidant properties of stratum corneum

    Get PDF
    Potentiometry and cyclic voltammetry were proposed as simple, reliable and non invasive methods for the simultaneous determination of pH and antioxidant properties of skin. Experiments were performed with microelectrodes just deposited on skin surface without any gel or water added. pH was measured by means of the zero current potential of a tungsten W/WO3 sensor. A nerstian response was recorded in pH range 4 to 6 corresponding to the normal skin pH values. The global antioxidant capacity was deduced from the anodic charge passed during the plotting of cyclic voltammograms on platinum or gold microelectrodes. Comparing the half wave or peak potentials of these curves with those recorded for experiments performed in aqueous solution, the main hydrophilic antioxidants species were detected, i.e. ascorbic acid, uric acid and glutathione. This relatively easy-to-use analytical method made it possible to follow in real time the efficiency of topic treatment as well as to study the influence of oxidative stres

    Biofilm dynamics characterization using a novel DO-MEA sensor: mass transport and biokinetics

    Get PDF
    Biodegradation process modeling is an essential tool for the optimization of biotechnologies related to gaseous pollutant treatment. In these technologies, the predominant role of biofilm, particularly under conditions of no mass transfer limitations, results in a need to determine what processes are occurring within the same. By measuring the interior of the biofilms, an increased knowledge of mass transport and biodegradation processes may be attained. This information is useful in order to develop more reliable models that take biofilm heterogeneity into account. In this study, a new methodology, based on a novel dissolved oxygen (DO) and mass transport microelectronic array (MEA) sensor, is presented in order to characterize a biofilm. Utilizing the MEA sensor, designed to obtain DO and diffusivity profiles with a single measurement, it was possible to obtain distributions of oxygen diffusivity and biokinetic parameters along a biofilm grown in a flat plate bioreactor (FPB). The results obtained for oxygen diffusivity, estimated from oxygenation profiles and direct measurements, revealed that changes in its distribution were reduced when increasing the liquid flow rate. It was also possible to observe the effect of biofilm heterogeneity through biokinetic parameters, estimated using the DO profiles. Biokinetic parameters, including maximum specific growth rate, the Monod half-saturation coefficient of oxygen, and the maintenance coefficient for oxygen which showed a marked variation across the biofilm, suggest that a tool that considers the heterogeneity of biofilms is essential for the optimization of biotechnologies.Peer ReviewedPostprint (published version

    Protocol: optimised electrophyiological analysis of intact guard cells from arabidopsis

    Get PDF
    Genetic resources available for Arabidopsis thaliana make this species particularly attractive as a model for molecular genetic studies of guard cell homeostasis, transport and signalling, but this facility is not matched by accessible tools for quantitative analysis of transport in the intact cell. We have developed a reliable set of procedures for voltage clamp analysis of guard cells from Arabidopsis leaves. These procedures greatly simplify electrophysiological recordings, extending the duration of measurements and scope for analysis of the predominant K+ and anion channels of intact stomatal guard cells to that achieved previously in work with Vicia and tobacco guard cells

    Electrochemical behaviour of carbamazepine in acetonitrile and dimethylformamide using glassy carbon electrodes and microelectrodes

    Get PDF
    The electrochemical reduction of carbamazepine in acetonitrile (ACN) and dimethylformamide (DMF) using a glassy carbon electrode and microelectrodes has been studied. The reduction process is consistent with an Electrochemical-Chemical mechanism (EC) involving a two electron transfer followed by a first order reaction, as shown by the cyclic voltammetry and differential pulse voltammetry. Half-wave potential, number of electron transfer, diffusion coefficient and rate constant of the associated chemical reaction are reported. Detection limits are in DPV: LoD=0.92 and 0.76 μg mL-1 in ACN and DMF, respectively. Precision (%RSD) and recovery (%) values when pharmaceutical compounds (200mg carbamazepine tablets) and spiked plasma samples were tested ranged from 1.09 to 9.04% and % recoveries ranged from 96 to 104.1%

    Control electronics for a neuro-electronic interface implemented in a gate array

    Get PDF
    Presents a Gate Array for implementing electronic circuitry to control multi-electrode arrays, which consist of 128 microelectrodes. The chip contains multiplexers, current sources and buffer amplifiers in CMOS technolog

    A new diamond biosensor with integrated graphitic microchannels for detecting quantal exocytic events from chromaffin cells

    Full text link
    The quantal release of catecholamines from neuroendocrine cells is a key mechanism which has been investigated with a broad range of materials and devices, among which carbon-based materials such as carbon fibers, diamond-like carbon, carbon nanotubes and nanocrystalline diamond. In the present work we demonstrate that a MeV-ion-microbeam lithographic technique can be successfully employed for the fabrication of an all-carbon miniaturized cellular bio-sensor based on graphitic micro-channels embedded in a single-crystal diamond matrix. The device was functionally characterized for the in vitro recording of quantal exocytic events from single chromaffin cells, with high sensitivity and signal-to-noise ratio, opening promising perspectives for the realization of monolithic all-carbon cellular biosensors
    corecore