7,913 research outputs found
High-Q-factor Al [subscript 2]O[subscript 3] micro-trench cavities integrated with silicon nitride waveguides on silicon
We report on the design and performance of high-Q integrated optical micro-trench cavities on silicon. The microcavities are co-integrated with silicon nitride bus waveguides and fabricated using wafer-scale silicon-photonics-compatible processing steps. The amorphous aluminum oxide resonator material is deposited via sputtering in a single straightforward post-processing step. We examine the theoretical and experimental optical properties of the aluminum oxide micro-trench cavities for different bend radii, film thicknesses and near-infrared wavelengths and demonstrate experimental Q factors of > 10[superscript 6]. We propose that this high-Q micro-trench cavity design can be applied to incorporate a wide variety of novel microcavity materials, including rare-earth-doped films for microlasers, into wafer-scale silicon photonics platforms
Ultralow threshold on-chip microcavity nanocrystal quantum dot lasers
Chemically synthesized nanocrystal, CdSe/ZnS (core/shell), quantum dots are coated on the surface of an ultrahigh-Q toroidal microcavity and the lasing is observed at room and liquid nitrogen temperature by pulsed excitation of quantum dots, either through tapered fiber or free space. Use of a tapered fiber coupling substantially lowered the threshold energy when compared with the case of free space excitation. The reason for the threshold reduction is attributed to the efficient delivery of pump pulses to the active gain region of the toroidal microcavity. Further threshold reduction was possible by quantum dot surface-coverage control. By decreasing the quantum dot numbers on the surface of the cavity, the threshold energy is further decreased down to 9.9 fJ
Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots
The quality factor (Q), mode volume (Veff), and room-temperature lasing
threshold of microdisk cavities with embedded quantum dots (QDs) are
investigated. Finite element method simulations of standing wave modes within
the microdisk reveal that Veff can be as small as 2(lambda/n)^3 while
maintaining radiation-limited Qs in excess of 10^5. Microdisks of diameter D=2
microns are fabricated in an AlGaAs material containing a single layer of InAs
QDs with peak emission at lambda = 1317 nm. For devices with Veff ~2
(lambda/n)^3, Qs as high as 1.2 x 10^5 are measured passively in the 1.4 micron
band, using an optical fiber taper waveguide. Optical pumping yields laser
emission in the 1.3 micron band, with room temperature, continuous-wave
thresholds as low as 1 microWatt of absorbed pump power. Out-coupling of the
laser emission is also shown to be significantly enhanced through the use of
optical fiber tapers, with laser differential efficiency as high as xi~16% and
out-coupling efficiency in excess of 28%.Comment: 6 figure
Finite-difference time-domain calculation of the spontaneous-emission coupling factor in optical microcavities
We present a general method for the β factor calculation in optical microcavities. The analysis is based on the classical model for atomic transitions in a semiconductor active medium. The finite-difference time-domain method is used to evolve the electromagnetic fields of the system and calculate the total radiated energy, as well as the energy radiated into the mode of interest. We analyze the microdisk laser and compare our result with the previous theoretical and experimental analyses. We also calculate the β factor of the microcavity based on a two-dimensional (2-D) photonic crystal in an optically thin dielectric slab. From the β calculations, we are able to estimate the coupling to radiation modes in both the microdisk and the 2-D photonic crystal cavity, thereby showing the effectiveness of the photonic crystal in suppressing in-plane radiation modes
Photothermal effects in ultra-precisely stabilized tunable microcavities
We study the mechanical stability of a tunable high-finesse microcavity under
ambient conditions and investigate light-induced effects that can both suppress
and excite mechanical fluctuations. As an enabling step, we demonstrate the
ultra-precise electronic stabilization of a microcavity. We then show that
photothermal mirror expansion can provide high-bandwidth feedback and improve
cavity stability by almost two orders of magnitude. At high intracavity power,
we observe self-oscillations of mechanical resonances of the cavity. We explain
the observations by a dynamic photothermal instability, leading to parametric
driving of mechanical motion. For an optimized combination of electronic and
photothermal stabilization, we achieve a feedback bandwidth of kHz and a
noise level of m rms
Universal relations for coupling of optical power between microresonators and dielectric waveguides
The most basic and generic configuration, which consists of a unidirectional coupling between a ring resonator and a waveguide, is considered. The fundamental working equations required to describe the associated power transfer are derived and the application of this geometry to a variety of optical phenomena is discussed. These phenomena include 'add/dropping' of optical beams, add/drop filtering and optical power switching
- …
