13,719 research outputs found

    Automatic event detection in microblogs using incremental machine learning

    Full text link
    The global popularity of microblogs has led to an increasing accumulation of large volumes of text data on microblogging platforms such as Twitter. These corpora are untapped resources to understand social expressions on diverse subjects. Microblog analysis aims to unlock the value of such expressions by discovering insights and events of significance hidden among swathes of text. Besides velocity; diversity of content, brevity, absence of structure and time-sensitivity are key challenges in microblog analysis. In this paper, we propose an unsupervised incremental machine learning and event detection technique to address these challenges. The proposed technique separates a microblog discussion into topics to address the key problem of diversity. It maintains a record of the evolution of each topic over time. Brevity, time-sensitivity and unstructured nature are addressed by these individual topic pathways which contribute to generate a temporal, topic-driven structure of a microblog discussion. The proposed event detection method continuously monitors these topic pathways using multiple domain-independent event indicators for events of significance. The autonomous nature of topic separation, topic pathway generation, new topic identification and event detection, appropriates the proposed technique for extensive applications in microblog analysis. We demonstrate these capabilities on tweets containing #microsoft and tweets containing #obama

    CLARITY at the TREC 2011 microblog track

    Get PDF
    For the first year of the TREC Microblog Track the CLARITY group concentrated on a number of areas, investigating the underlying term weighting scheme for ranking tweets, incorporating query expansion to introduce new terms into the query, as well as introducing an element of temporal re-weighting based on the temporal distribution of assumed relevant microblogs

    On the Impact of Entity Linking in Microblog Real-Time Filtering

    Full text link
    Microblogging is a model of content sharing in which the temporal locality of posts with respect to important events, either of foreseeable or unforeseeable nature, makes applica- tions of real-time filtering of great practical interest. We propose the use of Entity Linking (EL) in order to improve the retrieval effectiveness, by enriching the representation of microblog posts and filtering queries. EL is the process of recognizing in an unstructured text the mention of relevant entities described in a knowledge base. EL of short pieces of text is a difficult task, but it is also a scenario in which the information EL adds to the text can have a substantial impact on the retrieval process. We implement a start-of-the-art filtering method, based on the best systems from the TREC Microblog track realtime adhoc retrieval and filtering tasks , and extend it with a Wikipedia-based EL method. Results show that the use of EL significantly improves over non-EL based versions of the filtering methods.Comment: 6 pages, 1 figure, 1 table. SAC 2015, Salamanca, Spain - April 13 - 17, 201

    MAP: Microblogging Assisted Profiling of TV Shows

    Full text link
    Online microblogging services that have been increasingly used by people to share and exchange information, have emerged as a promising way to profiling multimedia contents, in a sense to provide users a socialized abstraction and understanding of these contents. In this paper, we propose a microblogging profiling framework, to provide a social demonstration of TV shows. Challenges for this study lie in two folds: First, TV shows are generally offline, i.e., most of them are not originally from the Internet, and we need to create a connection between these TV shows with online microblogging services; Second, contents in a microblogging service are extremely noisy for video profiling, and we need to strategically retrieve the most related information for the TV show profiling.To address these challenges, we propose a MAP, a microblogging-assisted profiling framework, with contributions as follows: i) We propose a joint user and content retrieval scheme, which uses information about both actors and topics of a TV show to retrieve related microblogs; ii) We propose a social-aware profiling strategy, which profiles a video according to not only its content, but also the social relationship of its microblogging users and its propagation in the social network; iii) We present some interesting analysis, based on our framework to profile real-world TV shows
    corecore