395,409 research outputs found

    Walls talk: Microbial biogeography of homes spanning urbanization.

    Get PDF
    Westernization has propelled changes in urbanization and architecture, altering our exposure to the outdoor environment from that experienced during most of human evolution. These changes might affect the developmental exposure of infants to bacteria, immune development, and human microbiome diversity. Contemporary urban humans spend most of their time indoors, and little is known about the microbes associated with different designs of the built environment and their interaction with the human immune system. This study addresses the associations between architectural design and the microbial biogeography of households across a gradient of urbanization in South America. Urbanization was associated with households' increased isolation from outdoor environments, with additional indoor space isolation by walls. Microbes from house walls and floors segregate by location, and urban indoor walls contain human bacterial markers of space use. Urbanized spaces uniquely increase the content of human-associated microbes-which could increase transmission of potential pathogens-and decrease exposure to the environmental microbes with which humans have coevolved

    Biofilms for babies: introducing microbes and biofilms to preschool-aged children

    Get PDF
    Microbes are beneficial to life on our planet as they facilitate natural processes such as global nutrient cycling in our environment. This article details a 30-minute activity to introduce pre-school children ranging from 3 to 5 years of age to microbes and biofilms in the natural environment

    Skin microbiota: a source of disease or defence?

    No full text
    Microbes found on the skin are usually regarded as pathogens, potential pathogens or innocuous symbiotic organisms. Advances in microbiology and immunology are revising our understanding of the molecular mechanisms of microbial virulence and the specific events involved in the host-microbe interaction. Current data contradict some historical classifications of cutaneous microbiota and suggest that these organisms may protect the host, defining them not as simple symbiotic microbes but rather as mutualistic. This review will summarize current information on bacterial skin flora including Staphylococcus, Corynebacterium, Propionibacterium, Streptococcus and Pseudomonas. Specifically, the review will discuss our current understanding of the cutaneous microbiota as well as shifting paradigms in the interpretation of the roles microbes play in skin health and disease

    House Flies: Manure, Media, and Microbes

    Get PDF
    This study was conducted to determine if there is a difference in bacterial abundance in house flies based on sex and rearing environment (manure versus artificial media) for house flies. This is important in determining the effectiveness of the facilities where the flies are being raised. Although, previous studies have shown differences in bacterial abundance between male and female house flies, it still remains unknown whether there is a discrepancy in bacterial abundance between rearing environments in the lab. We hypothesized that there would be a greater abundance of bacteria in females than males and a greater bacterial abundance in the manure environment than the artificial media. We determined that there was no significant difference between house fly sex or the environments in which they were raised. These results are meaningful because they introduce evidence of forced interaction that could skew the bacterial counts. In the future, the results would be more telling with a larger sample size.

    Investigating correlation of faecal indicator bacteria and potential pathogenic fungi on Dublin beaches in the interest of public health

    Get PDF
    Sandy beaches are usually the preferred location for leisure activities but may pose a risk to public health in particular to children, the elderly and immuno compromised individuals Beach sand and marine water may be a reservoir of opportunistic and pathogenic microbes, as well as faecal indicator bacteria (that influence the bathing water quality status. The growth and the proliferation of microbes in beach sand and water are not restricted to bacteria but include also different groups of fungi such as potentially pathogenic and allergenic moulds, yeasts and dermatophytes Currently, no clear guidance about pathogenic fungi levels in relation to public health is available for these environments.info:eu-repo/semantics/publishedVersio

    Micromanagement in the gut : microenvironmental factors govern colon mucosal biofilm structure and functionality

    Get PDF
    The human gut microbiome provides us with functional features that we did not have to evolve ourselves and can be viewed as a structured microbial community that operates like a microbial organ within the human host. A minor but important part of this microbiome is the ability to colonise and thrive within the mucous layer that covers the colon epithelium. These mucosal microbes intimately interact with the intestinal tissue and seem to be important modulators of human health. Embedded in the host-secreted mucous matrix, they form a 'mucosal biofilm' with a distinct composition and functionality. In this review, we provide evidence that six specific (micro) environmental factors near the colon mucosa shape and determine mucosal biofilm formation and stability, that is, (1) mucous rigidity, (2) gradients of fluid shear, (3) radial oxygen gradients, (4) secretions of host defense molecules, (5) the presence of a rich but challenging nutrient platform and (6) the presence of niches at the colon epithelial surface. In addition, it appears that microbes actively participate in shaping their mucosal environment. Current insights into the interaction between mucosal microbes and their environment are rather limited, and many questions regarding the contribution of mucosal biofilm functionality and stability to human health remain to be answered. Yet, given the higher potency of mucosal microbes than their luminal counterparts to interact with the host, new insights can accelerate the development of novel disease-preventive or therapeutic strategies

    RWU Marine Scientists to Collaborate on $3 Million NSF Grant Investigating Aquatic Viruses

    Get PDF
    Professors Marcia Marston and Koty Sharp join research team from four universities to study how marine and aquatic viruses impact microbes

    Structure, function and diversity of the healthy human microbiome

    Get PDF
    Studies of the human microbiome have revealed that even healthy individuals differ remarkably in the microbes that occupy habitats such as the gut, skin and vagina. Much of this diversity remains unexplained, although diet, environment, host genetics and early microbial exposure have all been implicated. Accordingly, to characterize the ecology of human-associated microbial communities, the Human Microbiome Project has analysed the largest cohort and set of distinct, clinically relevant body habitats so far. We found the diversity and abundance of each habitat’s signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals. The project encountered an estimated 81–99% of the genera, enzyme families and community configurations occupied by the healthy Western microbiome. Metagenomic carriage of metabolic pathways was stable among individuals despite variation in community structure, and ethnic/racial background proved to be one of the strongest associations of both pathways and microbes with clinical metadata. These results thus delineate the range of structural and functional configurations normal in the microbial communities of a healthy population, enabling future characterization of the epidemiology, ecology and translational applications of the human microbiome

    The microbiological quality of water: the nature of the problem

    Get PDF
    Improvements in methods for the detection and enumeration of microbes in water, particularly the application of techniques of molecular biology, have highlighted shortcomings in the ”standard methods” for assessing water quality. Higher expectations from the consumer and increased publicity associated with pollution incidents can lead to an uncoupling of the cycle which links methodological development with standard-setting and legislation. The new methodology has also highlighted problems within the water cycle, related to the introduction, growth and metabolism of microbes. A greater understanding of the true diversity of the microbial community and the ability to transmit genetic information within aquatic systems ensures that the subject of this symposium and volume provides an ideal forum to discuss the problems encountered by both researcher and practitioner
    corecore