597 research outputs found
C/EBPα-p30 protein induces expression of the oncogenic long non-coding RNA UCA1 in acute myeloid leukemia
Accumulating evidences indicate that different long non-coding RNAs (lncRNAs) might play a relevant role in tumorigenesis, with their expression and function already associated to cancer development and progression. CCAAT/enhancer-binding protein-α (CEBPA) is a critical regulator of myeloid differentiation whose inactivation contributes to the development of acute myeloid leukemia (AML). Mutations in C/EBPα occur in around 10% of AML cases, leading to the expression of a 30-kDa dominant negative isoform (C/EBPα-p30). In this study, we identified the oncogenic urothelial carcinoma associated 1 (UCA1) lncRNA as a novel target of the C/EBPα-p30. We show that wild-type C/EBPα and C/EBPα-p30 isoform can bind the UCA1 promoter but have opposite effects on UCA1 expression. While wild-type C/EBPα represses, C/EBPα-p30 can induce UCA1 transcription. Notably, we also show that UCA1 expression increases in cytogenetically normal AML cases carrying biallelic CEBPA mutations. Furthermore, we demonstrate that UCA1 sustains proliferation of AML cells by repressing the expression of the cell cycle regulator p27kip1. Thus, we identified, for the first time, an oncogenic lncRNA functioning in concert with the dominant negative isoform of C/EBPα in AML
Upregulated wnt-11 and mir-21 expression trigger epithelial mesenchymal transition in aggressive prostate cancer cells
Prostate cancer (PCa) is the second-leading cause of cancer-related death among men. microRNAs have been identified as having potential roles in tumorigenesis. An oncomir, miR-21, is commonly highly upregulated in many cancers, including PCa, and showed correlation with the Wnt-signaling axis to increase invasion. Wnt-11 is a developmentally regulated gene and has been found to be upregulated in PCa, but its mechanism is unknown. The present study aimed to investigate the roles of miR-21 and Wnt-11 in PCa in vivo and in vitro. First, different Gleason score PCa tissue samples were used; both miR-21 and Wnt-11 expressions correlate with high Gleason scores in PCa patient tissues. This data then was confirmed with formalin-fixed paraffin cell blocks using PCa cell lines LNCaP and PC3. Cell survival and colony formation studies proved that miR-21 involves in cells’ behaviors, as well as the epithelial-mesenchymal transition. Consistent with the previous data, silencing miR-21 led to significant inhibition of cellular invasiveness. Overall, these results suggest that miR-21 plays a significant role related to Wnt-11 in the pathophysiology of PCa
Bone Morphogenetic Protein‐2 Decreases MicroRNA‐30b and MicroRNA‐30c to Promote Vascular Smooth Muscle Cell Calcification
Background: Vascular calcification resembles bone formation and involves vascular smooth muscle cell (SMC) transition to an osteoblast‐like phenotype to express Runx2, a master osteoblast transcription factor. One possible mechanism by which Runx2 protein expression is induced is downregulation of inhibitory microRNAs (miR). Methods and Results: Human coronary artery SMCs (CASMCs) treated with bone morphogenetic protein‐2 (BMP‐2; 100 ng/mL) demonstrated a 1.7‐fold (P<0.02) increase in Runx2 protein expression at 24 hours. A miR microarray and target prediction database analysis independently identified miR‐30b and miR‐30c (miR‐30b‐c) as miRs that regulate Runx2 expression. Real‐time–polymerase chain reaction confirmed that BMP‐2 decreased miR‐30b and miR‐30c expression. A luciferase reporter assay verified that both miR‐30b and miR‐30c bind to the 3′‐untranslated region of Runx2 mRNA to regulate its expression. CASMCs transfected with antagomirs to downregulate miR‐30b‐c demonstrated significantly increased Runx2, intracellular calcium deposition, and mineralization. Conversely, forced expression of miR‐30b‐c by transfection with pre–miR‐30b‐c prevented the increase in Runx2 expression and mineralization of SMCs. Calcified human coronary arteries demonstrated higher levels of BMP‐2 and lower levels of miR‐30b than did noncalcified donor coronary arteries. Conclusions: BMP‐2 downregulates miR‐30b and miR‐30c to increase Runx2 expression in CASMCs and promote mineralization. Strategies that modulate expression of miR‐30b and miR‐30c may influence vascular calcification
Bta-miR-10b secreted by bovine embryos negatively impacts preimplantation embryo quality
In a previous study, we found miR-10b to be more abundant in a conditioned culture medium of degenerate embryos compared to that of blastocysts. Here, we show that miR-10b mimics added to the culture medium can be taken up by embryos. This uptake results in an increase in embryonic cell apoptosis and aberrant expression of DNA methyltransferases (DNMTs). Using several algorithms, Homeobox Al (HOXA1) was identified as one of the potential miR-10b target genes and dual-luciferase assay confirmed HOXA1 as a direct target of miR-10b. Microinjection of si-HOXA1 into embryos also resulted in an increase in embryonic cell apoptosis and downregulation of DNMTs. Cell progression analysis using Madin-Darby bovine kidney cells (MDBKs) showed that miR-10b overexpression and HOXA1 knockdown results in suppressed cell cycle progression and decreased cell viability. Overall, this work demonstrates that miR-10b negatively influences embryo quality and might do this through targeting HOXA1 and/or influencing DNA methylation
Role of noncoding RNA in vascular remodelling
Purpose of review: Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are becoming fundamentally important in the pathophysiology relating to injury-induced vascular remodelling. We highlight recent studies that demonstrate the involvement of ncRNAs in vein graft disease, in in-stent restenosis and in pulmonary arterial hypertension, with a particular focus on endothelial cell and vascular smooth muscle cell function. We also briefly discuss the emerging role of exosomal-derived ncRNAs and how this mechanism impacts on vascular function.
Recent findings: ncRNAs have been described as novel regulators in the pathophysiology of vascular injury, inflammation, and vessel wall remodelling. In particular, several studies have demonstrated that manipulation of miRNAs can reduce the burden of pathological vascular remodelling. Such studies have also shown that exosomal miRNA-mediated, cell-to-cell communication between endothelial cells and vascular smooth muscle cells is critical in the disease process. In addition to miRNAs, lncRNAs are emerging as regulators of vascular function in health and disease. Although lncRNAs are complex in both their sheer numbers and mechanisms of action, identifying their contribution to vascular disease is essential.
Summary: Given the important roles of ncRNAs in vascular injury and remodelling together will their capacity for cell-to-cell communication, manipulating ncRNA might provide novel therapeutic interventions
A Novel Predictor Tool of Biochemical Recurrence after Radical Prostatectomy Based on a Five-MicroRNA Tissue Signature
Within five to ten years after radical prostatectomy (RP), approximately 15-34% of prostate cancer (PCa) patients experience biochemical recurrence (BCR), which is defined as recurrence of serum levels of prostate-specific antigen >0.2 µg/L, indicating probable cancer recurrence. Models using clinicopathological variables for predicting this risk for patients lack accuracy. There is hope that new molecular biomarkers, like microRNAs (miRNAs), could be potential candidates to improve risk prediction. Therefore, we evaluated the BCR prognostic capability of 20 miRNAs, which were selected by a systematic literature review. MiRNA expressions were measured in formalin-fixed, paraffin-embedded (FFPE) tissue RP samples of 206 PCa patients by RT-qPCR. Univariate and multivariate Cox regression analyses were performed, to assess the independent prognostic potential of miRNAs. Internal validation was performed, using bootstrapping and the split-sample method. Five miRNAs (miR-30c-5p/31-5p/141-3p/148a-3p/miR-221-3p) were finally validated as independent prognostic biomarkers. Their prognostic ability and accuracy were evaluated using C-statistics of the obtained prognostic indices in the Cox regression, time-dependent receiver-operating characteristics, and decision curve analyses. Models of miRNAs, combined with relevant clinicopathological factors, were built. The five-miRNA-panel outperformed clinically established BCR scoring systems, while their combination significantly improved predictive power, based on clinicopathological factors alone. We conclude that this miRNA-based-predictor panel will be worth to be including in future studies
MicroRNA29a regulates IL-33-mediated tissue remodelling in tendon disease
MicroRNA (miRNA) has the potential for cross-regulation and functional integration of discrete biological processes during complex physiological events. Utilizing the common human condition tendinopathy as a model system to explore the cross-regulation of immediate inflammation and matrix synthesis by miRNA we observed that elevated IL-33 expression is a characteristic of early tendinopathy. Using in vitro tenocyte cultures and in vivo models of tendon damage, we demonstrate that such IL-33 expression plays a pivotal role in the transition from type 1 to type 3 collagen (Col3) synthesis and thus early tendon remodelling. Both IL-33 effector function, via its decoy receptor sST2, and Col3 synthesis are regulated by miRNA29a. Downregulation of miRNA29a in human tenocytes is sufficient to induce an increase in Col3 expression. These data provide a molecular mechanism of miRNA-mediated integration of the early pathophysiologic events that facilitate tissue remodelling in human tendon after injury
Sphingosine 1-phosphate receptors: do they have a therapeutic potential in cardiac fibrosis?
Sphingosine 1-phosphate (S1P) is a bioactive lipid that is characterized by a peculiar mechanism of action. In fact, S1P, which is produced inside the cell, can act as
an intracellular mediator, whereas after its export outside the cell, it can act as ligand of specific G-protein coupled receptors, which were initially named endothelial
differentiation gene (Edg) and eventually renamed sphingosine 1-phosphate receptors (S1PRs). Among the five S1PR subtypes, S1PR1, S1PR2 and S1PR3 isoforms show broad tissue gene expression, while S1PR4 is primarily expressed in immune system cells, and S1PR5 is expressed in the central nervous system. There is accumulating evidence for the important role of S1P as a mediator of many processes, such as angiogenesis, carcinogenesis and immunity, and, ultimately, fibrosis. After a tissue injury, the imbalance between the production of extracellular matrix (ECM) and its degradation, which occurs due to chronic inflammatory conditions, leads to an accumulation of ECM and, consequential, organ dysfunction. In these pathological conditions, many factors have been described to act as pro- and anti-fibrotic agents, including S1P. This bioactive lipid exhibits both pro- and anti-fibrotic effects, depending on its site of action. In this review, after a brief description of sphingolipid metabolism and signaling, we emphasize the involvement of the S1P/S1PR axis and the downstream signaling pathways in the development of fibrosis. The current knowledge of the therapeutic potential of S1PR subtype modulators in the treatment of the cardiac functions and fibrinogenesis are also examined
Subtype-specific micro-RNA expression signatures in breast cancer progression.
Robust markers of invasiveness may help reduce the overtreatment of in situ carcinomas. Breast cancer is a heterogeneous disease and biological mechanisms for carcinogenesis vary between subtypes. Stratification by subtype is therefore necessary to identify relevant and robust signatures of invasive disease. We have identified microRNA (miRNA) alterations during breast cancer progression in two separate datasets and used stratification and external validation to strengthen the findings. We analyzed two separate datasets (METABRIC and AHUS) consisting of a total of 186 normal breast tissue samples, 18 ductal carcinoma in situ (DCIS) and 1,338 invasive breast carcinomas. Validation in a separate dataset and stratification by molecular subtypes based on immunohistochemistry, PAM50 and integrated cluster classifications were performed. We propose subtype-specific miRNA signatures of invasive carcinoma and a validated signature of DCIS. miRNAs included in the invasive signatures include downregulation of miR-139-5p in aggressive subtypes and upregulation of miR-29c-5p expression in the luminal subtypes. No miRNAs were differentially expressed in the transition from DCIS to invasive carcinomas on the whole, indicating the need for subtype stratification. A total of 27 miRNAs were included in our proposed DCIS signature. Significant alterations of expression included upregulation of miR-21-5p and the miR-200 family and downregulation of let-7 family members in DCIS samples. The signatures proposed here can form the basis for studies exploring DCIS samples with increased invasive potential and serum biomarkers for in situ and invasive breast cancer.This work was performed as part of the EurocanPlatform which has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 260791. Portions of this research (Venn diagram creator) were supported by the W.R. Wiley Environmental Molecular Science Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle Memorial Institute for the U.S. Department of Energy under contract DE-AC05-76RL0 1830.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1002/ijc.3014
- …
