3 research outputs found

    Dense Subgraphs in Random Graphs

    Full text link
    For a constant γ[0,1]\gamma \in[0,1] and a graph GG, let ωγ(G)\omega_{\gamma}(G) be the largest integer kk for which there exists a kk-vertex subgraph of GG with at least γ(k2)\gamma\binom{k}{2} edges. We show that if 0<p<γ<10<p<\gamma<1 then ωγ(Gn,p)\omega_{\gamma}(G_{n,p}) is concentrated on a set of two integers. More precisely, with α(γ,p)=γlogγp+(1γ)log1γ1p\alpha(\gamma,p)=\gamma\log\frac{\gamma}{p}+(1-\gamma)\log\frac{1-\gamma}{1-p}, we show that ωγ(Gn,p)\omega_{\gamma}(G_{n,p}) is one of the two integers closest to 2α(γ,p)(lognloglogn+logeα(γ,p)2)+12\frac{2}{\alpha(\gamma,p)}\big(\log n-\log\log n+\log\frac{e\alpha(\gamma,p)}{2}\big)+\frac{1}{2}, with high probability. While this situation parallels that of cliques in random graphs, a new technique is required to handle the more complicated ways in which these "quasi-cliques" may overlap
    corecore