65,564 research outputs found
Effect of polymer concentration and length of hydrophobic end block on the unimer-micelle transition broadness in amphiphilic ABA symmetric triblock copolymer solutions
The effects of the length of each hydrophobic end block N_{st} and polymer
concentration \bar{\phi}_{P} on the transition broadness in amphiphilic ABA
symmetric triblock copolymer solutions are studied using the self-consistent
field lattice model. When the system is cooled, micelles are observed, i.e.,the
homogenous solution (unimer)-micelle transition occurs. When N_{st} is
increased, at fixed \bar{\phi}_{P}, micelles occur at higher temperature, and
the temperature-dependent range of micellar aggregation and half-width of
specific heat peak for unimer-micelle transition increase monotonously.
Compared with associative polymers, it is found that the magnitude of the
transition broadness is determined by the ratio of hydrophobic to hydrophilic
blocks, instead of chain length. When \bar{\phi}_{P} is decreased, given a
large N_{st}, the temperature-dependent range of micellar aggregation and
half-width of specific heat peak initially decease, and then remain nearly
constant. It is shown that the transition broadness is concerned with the
changes of the relative magnitudes of the eductions of nonstickers and solvents
from micellar cores.Comment: 8 pages, 4 figure
Competition between shear banding and wall slip in wormlike micelles
The interplay between shear band (SB) formation and boundary conditions (BC)
is investigated in wormlike micellar systems (CPyCl--NaSal) using ultrasonic
velocimetry coupled to standard rheology in Couette geometry. Time-resolved
velocity profiles are recorded during transient strain-controlled experiments
in smooth and sand-blasted geometries. For stick BC standard SB is observed,
although depending on the degree of micellar entanglement temporal fluctuations
are reported in the highly sheared band. For slip BC wall slip occurs only for
shear rates larger than the start of the stress plateau. At low entanglement,
SB formation is shifted by a constant , while for more
entangled systems SB constantly "nucleate and melt." Micellar orientation
gradients at the walls may account for these original features.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let
Complex formation and enantioselectivity studies of triazole fungicide and organophosphorus pesticide enantiomers using capillary electrophoresis
Several cyclodextrin modified-micellar electrokinetic chromatography (CDMEKC) methods were developed for the successful triazole fungicides separation. In the first part, an efficient method was developed for the simultaneous enantioseparation of cyproconazole (4 stereoisomer), bromuconazole (4 stereoisomer) and diniconazole (2 stereisomer) enantiomers using CD-MEKC with a dual mixture of neutral cyclodextrins as chiral selector. The best simultaneous separation of cyproconazole, bromuconazole, and diniconazole enantiomers was achieved with a mixture of 27 mM HP-β-CD and 3 mM HP-γ-CD in 25 mM phosphate buffer (pH 3.0) containing 40 mM sodium dodecyl sulfate (SDS) and 15% iso-propanol as organic modifier. Complete separation of 10 stereoisomer of triazole fungicides were obtained in a single run with good resolution (Rs 1.74“26.31) and high peak efficiency (N > 400 000). In the second part of the study, enantioseparation of hexaconazole, penconazole, myclobutanil, and triadimefon was investigated. Simultaneous enantioseparation of penconazole, myclobutanil, and triadimefon was achieved under acidic condition (pH 3.0) using 25 mM phosphate buffer, 50 mM SDS, and 30 mM HP-γ-CD, with Rs greater than 0.9 whereas, simultaneous enantioseparation of hexaconazole, penconazole, and myclobutanil was successfully achieved under neutral condition (pH 7.0) using 25 mM phosphate buffer, 40 mM SDS, and 40 mM HP-γ-CD, with Rs greater than1.6. In order to improve detection sensitivity, on-line preconcentration technique was investigated. It was found that sweeping technique as an on-line preconcentration technique improved the detection sensitivity of the enantioseparation of cyproconazole, bromuconazole, and diniconazole by 30 to 60-fold, with good repeatabilities in the migration time, peak area and peak height were obtained with RSDs in the range of 0.08“0.32%, 0.03“ 2.44%, and 2.13“8.44% respectively. Furthermore, sweeping technique improved the detection sensitivity of the enantioseparation of hexaconazole, penconazole and myclobutanil by 62- to 67-fold. Good repeatabilities in the migration time, peak area and peak height were obtained with RSDs in the range of 2.39“3.90%, 1.96€“6.15%, and 2.80“6.64% respectively. Finally, the formation constant of diniconazole enantiomers with HP-γ-CD under neutral and acidic condition was investigated using CD-MEKC
Kinetics of Surfactant Micellization: a Free Energy Approach
We present a new theoretical approach to the kinetics of micelle formation in
surfactant solutions, in which the various stages of aggregation are treated as
constrained paths on a single free-energy landscape. Three stages of
well-separated time scales are distinguished. The first and longest stage
involves homogeneous nucleation of micelles, for which we derive the size of
the critical nuclei, their concentration, and the nucleation rate.
Subsequently, a much faster growth stage takes place, which is found to be
diffusion-limited for surfactant concentrations slightly above the critical
micellar concentration ({\it cmc}), and either diffusion-limited or kinetically
limited for higher concentrations. The time evolution of the growth is derived
for both cases. At the end of the growth stage the micelle size may be either
larger or smaller than its equilibrium value, depending on concentration. A
final stage of equilibration follows, during which the micelles relax to their
equilibrium size through fission or fusion. Both cases of fixed surfactant
concentration (closed system) and contact with a reservoir of surfactant
monomers (open system) are addressed and found to exhibit very different
kinetics. In particular, we find that micelle formation in an open system
should be kinetically suppressed over macroscopic times and involve two stages
of micelle nucleation rather than one.Comment: 24 pages, 14 figure
Pretransitional behavior in a water-DDAB-5CB microemulsion close to the demixing transition. Evidence for intermicellar attraction mediated by paranematic fluctuations
We present a study of a water-in-oil microemulsion in which surfactant coated
water nanodroplets are dispersed in the isotropic phase of the thermotropic
liquid crystal 5CB. As the temperature is lowered below the isotropic to
nematic phase transition of pure 5CB, the system displays a demixing transition
leading to a coexistence of a droplet rich isotropic phase with a droplet poor
nematic. The transition is anticipated, in the high T side, by increasing
pretransitional fluctuations in 5CB molecular orientation and in the
nanodroplet concentration. The observed phase behavior supports the notion that
the nanosized droplets, while large enough for their statistical behavior to be
probed via light scattering, are also small enough to act as impurities,
disturbing the local orientational ordering of the liquid crystal and thus
experiencing pretransitional attractive interaction mediated by paranematic
fluctuations. The pretransitional behavior, together with the topology of the
phase diagram, can be understood on the basis of a diluted Lebwohl-Lasher model
which describes the nanodroplets simply as holes in the liquid crystal.Comment: 64 pages, 16 figures, J. Chem. Phys. in pres
Kinetics of non-ionic surfactant adsorption at a fluid-fluid interface from a micellar solution
The kinetics of non-ionic surfactant adsorption at a fluid-fluid interface
from a micellar solution is considered theoretically. Our model takes into
account the effect of micelle relaxation on the diffusion of the free
surfactant molecules. It is shown that non-ionic surfactants undergo either a
diffusion or a kinetically limited adsorption according to the characteristic
relaxation time of the micelles. This gives a new interpretation for the
observed dynamical surface tension of micellar solutions.Comment: 4 page
Oscillatory settling in wormlike-micelle solutions: bursts and a long time scale
We study the dynamics of a spherical steel ball falling freely through a
solution of entangled wormlike-micelles. If the sphere diameter is larger than
a threshold value, the settling velocity shows repeated short oscillatory
bursts separated by long periods of relative quiescence. We propose a model
incorporating the interplay of settling-induced flow, viscoelastic stress and,
as in M. E. Cates, D. A. Head and A. Ajdari, Phys. Rev. E, 2002, 66, 025202(R)
and A. Aradian and M. E. Cates, Phys. Rev. E, 2006, 73, 041508, a slow
structural variable for which our experiments offer independent evidence.Comment: To appear in Soft Matte
Micellar Aggregates of Gemini Surfactants: Monte Carlo Simulation of a Microscopic Model
We propose a "microscopic" model of gemini surfactants in aqueous solution.
Carrying out extensive Monte Carlo simulations, we study the variation of the
critical micellar concentration (CMC) of these model gemini surfactants with
the variation of the (a) length of the spacer connecting the two hydrophilic
heads, (b) length of the hydrophobic tail and (c) the bending rigidity of the
hydrocarbon chains forming the spacer and the tail; some of the trends of
variation are counter-intuitive but are in excellent agreement with the
available experimental results. Our simulations also elucidate the dependence
of the shapes of the micellar aggregates and the magnitude of the CMC on the
geometrical shape and size of the surfactant molecules and the electrical
charge on the hydrophilic heads
Fluid-Induced Propulsion of Rigid Particles in Wormlike Micellar Solutions
In the absence of inertia, a reciprocal swimmer achieves no net motion in a
viscous Newtonian fluid. Here, we investigate the ability of a reciprocally
actuated particle to translate through a complex fluid that possesses a network
using tracking methods and birefringence imaging. A geometrically polar
particle, a rod with a bead on one end, is reciprocally rotated using magnetic
fields. The particle is immersed in a wormlike micellar (WLM) solution that is
known to be susceptible to the formation of shear bands and other localized
structures due to shear-induced remodeling of its microstructure. Results show
that the nonlinearities present in this WLM solution break time-reversal
symmetry under certain conditions, and enable propulsion of an artificial
"swimmer." We find three regimes dependent on the Deborah number (De): net
motion towards the bead-end of the particle at low De, net motion towards the
rod-end of the particle at intermediate De, and no appreciable propulsion at
high De. At low De, where the particle time-scale is longer then the fluid
relaxation time, we believe that propulsion is caused by an imbalance in the
fluid first normal stress differences between the two ends of the particle
(bead and rod). At De~1, however, we observe the emergence of a region of
network anisotropy near the rod using birefringence imaging. This anisotropy
suggests alignment of the micellar network, which is "locked in" due to the
shorter time-scale of the particle relative to the fluid
- …
