19,320 research outputs found

    Linear and Range Counting under Metric-based Local Differential Privacy

    Full text link
    Local differential privacy (LDP) enables private data sharing and analytics without the need for a trusted data collector. Error-optimal primitives (for, e.g., estimating means and item frequencies) under LDP have been well studied. For analytical tasks such as range queries, however, the best known error bound is dependent on the domain size of private data, which is potentially prohibitive. This deficiency is inherent as LDP protects the same level of indistinguishability between any pair of private data values for each data downer. In this paper, we utilize an extension of ϵ\epsilon-LDP called Metric-LDP or EE-LDP, where a metric EE defines heterogeneous privacy guarantees for different pairs of private data values and thus provides a more flexible knob than ϵ\epsilon does to relax LDP and tune utility-privacy trade-offs. We show that, under such privacy relaxations, for analytical workloads such as linear counting, multi-dimensional range counting queries, and quantile queries, we can achieve significant gains in utility. In particular, for range queries under EE-LDP where the metric EE is the L1L^1-distance function scaled by ϵ\epsilon, we design mechanisms with errors independent on the domain sizes; instead, their errors depend on the metric EE, which specifies in what granularity the private data is protected. We believe that the primitives we design for EE-LDP will be useful in developing mechanisms for other analytical tasks, and encourage the adoption of LDP in practice

    Quantification of De-anonymization Risks in Social Networks

    Full text link
    The risks of publishing privacy-sensitive data have received considerable attention recently. Several de-anonymization attacks have been proposed to re-identify individuals even if data anonymization techniques were applied. However, there is no theoretical quantification for relating the data utility that is preserved by the anonymization techniques and the data vulnerability against de-anonymization attacks. In this paper, we theoretically analyze the de-anonymization attacks and provide conditions on the utility of the anonymized data (denoted by anonymized utility) to achieve successful de-anonymization. To the best of our knowledge, this is the first work on quantifying the relationships between anonymized utility and de-anonymization capability. Unlike previous work, our quantification analysis requires no assumptions about the graph model, thus providing a general theoretical guide for developing practical de-anonymization/anonymization techniques. Furthermore, we evaluate state-of-the-art de-anonymization attacks on a real-world Facebook dataset to show the limitations of previous work. By comparing these experimental results and the theoretically achievable de-anonymization capability derived in our analysis, we further demonstrate the ineffectiveness of previous de-anonymization attacks and the potential of more powerful de-anonymization attacks in the future.Comment: Published in International Conference on Information Systems Security and Privacy, 201

    Preserving Link Privacy in Social Network Based Systems

    Full text link
    A growing body of research leverages social network based trust relationships to improve the functionality of the system. However, these systems expose users' trust relationships, which is considered sensitive information in today's society, to an adversary. In this work, we make the following contributions. First, we propose an algorithm that perturbs the structure of a social graph in order to provide link privacy, at the cost of slight reduction in the utility of the social graph. Second we define general metrics for characterizing the utility and privacy of perturbed graphs. Third, we evaluate the utility and privacy of our proposed algorithm using real world social graphs. Finally, we demonstrate the applicability of our perturbation algorithm on a broad range of secure systems, including Sybil defenses and secure routing.Comment: 16 pages, 15 figure

    Privacy-Preserving Distributed Optimization via Subspace Perturbation: A General Framework

    Get PDF
    As the modern world becomes increasingly digitized and interconnected, distributed signal processing has proven to be effective in processing its large volume of data. However, a main challenge limiting the broad use of distributed signal processing techniques is the issue of privacy in handling sensitive data. To address this privacy issue, we propose a novel yet general subspace perturbation method for privacy-preserving distributed optimization, which allows each node to obtain the desired solution while protecting its private data. In particular, we show that the dual variables introduced in each distributed optimizer will not converge in a certain subspace determined by the graph topology. Additionally, the optimization variable is ensured to converge to the desired solution, because it is orthogonal to this non-convergent subspace. We therefore propose to insert noise in the non-convergent subspace through the dual variable such that the private data are protected, and the accuracy of the desired solution is completely unaffected. Moreover, the proposed method is shown to be secure under two widely-used adversary models: passive and eavesdropping. Furthermore, we consider several distributed optimizers such as ADMM and PDMM to demonstrate the general applicability of the proposed method. Finally, we test the performance through a set of applications. Numerical tests indicate that the proposed method is superior to existing methods in terms of several parameters like estimated accuracy, privacy level, communication cost and convergence rate

    Privacy Games: Optimal User-Centric Data Obfuscation

    Full text link
    In this paper, we design user-centric obfuscation mechanisms that impose the minimum utility loss for guaranteeing user's privacy. We optimize utility subject to a joint guarantee of differential privacy (indistinguishability) and distortion privacy (inference error). This double shield of protection limits the information leakage through obfuscation mechanism as well as the posterior inference. We show that the privacy achieved through joint differential-distortion mechanisms against optimal attacks is as large as the maximum privacy that can be achieved by either of these mechanisms separately. Their utility cost is also not larger than what either of the differential or distortion mechanisms imposes. We model the optimization problem as a leader-follower game between the designer of obfuscation mechanism and the potential adversary, and design adaptive mechanisms that anticipate and protect against optimal inference algorithms. Thus, the obfuscation mechanism is optimal against any inference algorithm
    corecore