58,734 research outputs found

    Sub-structural Niching in Estimation of Distribution Algorithms

    Full text link
    We propose a sub-structural niching method that fully exploits the problem decomposition capability of linkage-learning methods such as the estimation of distribution algorithms and concentrate on maintaining diversity at the sub-structural level. The proposed method consists of three key components: (1) Problem decomposition and sub-structure identification, (2) sub-structure fitness estimation, and (3) sub-structural niche preservation. The sub-structural niching method is compared to restricted tournament selection (RTS)--a niching method used in hierarchical Bayesian optimization algorithm--with special emphasis on sustained preservation of multiple global solutions of a class of boundedly-difficult, additively-separable multimodal problems. The results show that sub-structural niching successfully maintains multiple global optima over large number of generations and does so with significantly less population than RTS. Additionally, the market share of each of the niche is much closer to the expected level in sub-structural niching when compared to RTS

    Algorithms for Game Metrics

    Get PDF
    Simulation and bisimulation metrics for stochastic systems provide a quantitative generalization of the classical simulation and bisimulation relations. These metrics capture the similarity of states with respect to quantitative specifications written in the quantitative {\mu}-calculus and related probabilistic logics. We first show that the metrics provide a bound for the difference in long-run average and discounted average behavior across states, indicating that the metrics can be used both in system verification, and in performance evaluation. For turn-based games and MDPs, we provide a polynomial-time algorithm for the computation of the one-step metric distance between states. The algorithm is based on linear programming; it improves on the previous known exponential-time algorithm based on a reduction to the theory of reals. We then present PSPACE algorithms for both the decision problem and the problem of approximating the metric distance between two states, matching the best known algorithms for Markov chains. For the bisimulation kernel of the metric our algorithm works in time O(n^4) for both turn-based games and MDPs; improving the previously best known O(n^9\cdot log(n)) time algorithm for MDPs. For a concurrent game G, we show that computing the exact distance between states is at least as hard as computing the value of concurrent reachability games and the square-root-sum problem in computational geometry. We show that checking whether the metric distance is bounded by a rational r, can be done via a reduction to the theory of real closed fields, involving a formula with three quantifier alternations, yielding O(|G|^O(|G|^5)) time complexity, improving the previously known reduction, which yielded O(|G|^O(|G|^7)) time complexity. These algorithms can be iterated to approximate the metrics using binary search.Comment: 27 pages. Full version of the paper accepted at FSTTCS 200

    Game Refinement Relations and Metrics

    Full text link
    We consider two-player games played over finite state spaces for an infinite number of rounds. At each state, the players simultaneously choose moves; the moves determine a successor state. It is often advantageous for players to choose probability distributions over moves, rather than single moves. Given a goal, for example, reach a target state, the question of winning is thus a probabilistic one: what is the maximal probability of winning from a given state? On these game structures, two fundamental notions are those of equivalences and metrics. Given a set of winning conditions, two states are equivalent if the players can win the same games with the same probability from both states. Metrics provide a bound on the difference in the probabilities of winning across states, capturing a quantitative notion of state similarity. We introduce equivalences and metrics for two-player game structures, and we show that they characterize the difference in probability of winning games whose goals are expressed in the quantitative mu-calculus. The quantitative mu-calculus can express a large set of goals, including reachability, safety, and omega-regular properties. Thus, we claim that our relations and metrics provide the canonical extensions to games, of the classical notion of bisimulation for transition systems. We develop our results both for equivalences and metrics, which generalize bisimulation, and for asymmetrical versions, which generalize simulation
    • …
    corecore