406 research outputs found

    Dual gauge field theory of quantum liquid crystals in two dimensions

    Get PDF
    We present a self-contained review of the theory of dislocation-mediated quantum melting at zero temperature in two spatial dimensions. The theory describes the liquid-crystalline phases with spatial symmetries in between a quantum crystalline solid and an isotropic superfluid: quantum nematics and smectics. It is based on an Abelian-Higgs-type duality mapping of phonons onto gauge bosons ("stress photons"), which encode for the capacity of the crystal to propagate stresses. Dislocations and disclinations, the topological defects of the crystal, are sources for the gauge fields and the melting of the crystal can be understood as the proliferation (condensation) of these defects, giving rise to the Anderson-Higgs mechanism on the dual side. For the liquid crystal phases, the shear sector of the gauge bosons becomes massive signaling that shear rigidity is lost. Resting on symmetry principles, we derive the phenomenological imaginary time actions of quantum nematics and smectics and analyze the full spectrum of collective modes. The quantum nematic is a superfluid having a true rotational Goldstone mode due to rotational symmetry breaking, and the origin of this 'deconfined' mode is traced back to the crystalline phase. The two-dimensional quantum smectic turns out to be a dizzyingly anisotropic phase with the collective modes interpolating between the solid and nematic in a non-trivial way. We also consider electrically charged bosonic crystals and liquid crystals, and carefully analyze the electromagnetic response of the quantum liquid crystal phases. In particular, the quantum nematic is a real superconductor and shows the Meissner effect. Their special properties inherited from spatial symmetry breaking show up mostly at finite momentum, and should be accessible by momentum-sensitive spectroscopy.Comment: Review article, 137 pages, 32 figures. Accepted versio

    Topological Sound and Flocking on Curved Surfaces

    Full text link
    Active systems on curved geometries are ubiquitous in the living world. In the presence of curvature orientationally ordered polar flocks are forced to be inhomogeneous, often requiring the presence of topological defects even in the steady state due to the constraints imposed by the topology of the underlying surface. In the presence of spontaneous flow the system additionally supports long-wavelength propagating sound modes which get gapped by the curvature of the underlying substrate. We analytically compute the steady state profile of an active polar flock on a two-sphere and a catenoid, and show that curvature and active flow together result in symmetry protected topological modes that get localized to special geodesics on the surface (the equator or the neck respectively). These modes are the analogue of edge states in electronic quantum Hall systems and provide unidirectional channels for information transport in the flock, robust against disorder and backscattering.Comment: 15 pages, 6 figure

    Vortex crystals

    Get PDF
    Vortex crystals is one name in use for the subject of vortex patterns that move without change of shape or size. Most of what is known pertains to the case of arrays of parallel line vortices moving so as to produce an essentially two-dimensional flow. The possible patterns of points indicating the intersections of these vortices with a plane perpendicular to them have been studied for almost 150 years. Analog experiments have been devised, and experiments with vortices in a variety of fluids have been performed. Some of the states observed are understood analytically. Others have been found computationally to high precision. Our degree of understanding of these patterns varies considerably. Surprising connections to the zeros of 'special functions' arising in classical mathematical physics have been revealed. Vortex motion on two-dimensional manifolds, such as the sphere, the cylinder (periodic strip) and torus (periodic parallelogram) has also been studied, because of the potential applications, and some results are available regarding the problem of vortex crystals in such geometries. Although a large amount of material is available for review, some results are reported here for the first time. The subject seems pregnant with possibilities for further development.published or submitted for publicationis peer reviewe

    Topological Superfluids

    Full text link
    There are many topological faces of the superfluid phases of 3^3He. These superfluids contain various topological defects and textures. The momentum space topology of these superfluids is also nontrivial, as well as the topology in the combined (p,r){\bf p},{\bf r}) phase space, giving rise to topologically protected Dirac, Weyl and Majorana fermions living in bulk, on the surface and within the topological objects. The nontrivial topology lead to different types of anomalies, which extended in many different directions the Landau-Khalatninkov theory of superfluidity.Comment: 29 pages, 20 figures, 214 references, the draft for the issue of JETP devoted to Khalatnikov-10
    corecore