36,901 research outputs found

    Metric Learning for Temporal Sequence Alignment

    Get PDF
    In this paper, we propose to learn a Mahalanobis distance to perform alignment of multivariate time series. The learning examples for this task are time series for which the true alignment is known. We cast the alignment problem as a structured prediction task, and propose realistic losses between alignments for which the optimization is tractable. We provide experiments on real data in the audio to audio context, where we show that the learning of a similarity measure leads to improvements in the performance of the alignment task. We also propose to use this metric learning framework to perform feature selection and, from basic audio features, build a combination of these with better performance for the alignment

    Improving End-to-End Speech Recognition with Policy Learning

    Full text link
    Connectionist temporal classification (CTC) is widely used for maximum likelihood learning in end-to-end speech recognition models. However, there is usually a disparity between the negative maximum likelihood and the performance metric used in speech recognition, e.g., word error rate (WER). This results in a mismatch between the objective function and metric during training. We show that the above problem can be mitigated by jointly training with maximum likelihood and policy gradient. In particular, with policy learning we are able to directly optimize on the (otherwise non-differentiable) performance metric. We show that joint training improves relative performance by 4% to 13% for our end-to-end model as compared to the same model learned through maximum likelihood. The model achieves 5.53% WER on Wall Street Journal dataset, and 5.42% and 14.70% on Librispeech test-clean and test-other set, respectively

    Weakly-Supervised Action Segmentation with Iterative Soft Boundary Assignment

    Full text link
    In this work, we address the task of weakly-supervised human action segmentation in long, untrimmed videos. Recent methods have relied on expensive learning models, such as Recurrent Neural Networks (RNN) and Hidden Markov Models (HMM). However, these methods suffer from expensive computational cost, thus are unable to be deployed in large scale. To overcome the limitations, the keys to our design are efficiency and scalability. We propose a novel action modeling framework, which consists of a new temporal convolutional network, named Temporal Convolutional Feature Pyramid Network (TCFPN), for predicting frame-wise action labels, and a novel training strategy for weakly-supervised sequence modeling, named Iterative Soft Boundary Assignment (ISBA), to align action sequences and update the network in an iterative fashion. The proposed framework is evaluated on two benchmark datasets, Breakfast and Hollywood Extended, with four different evaluation metrics. Extensive experimental results show that our methods achieve competitive or superior performance to state-of-the-art methods.Comment: CVPR 201
    • …
    corecore