628,055 research outputs found

    Methyl Methacrylate Oligomerically-Modified Clay and its Poly (Methyl Methacrylate) Nanocomposites

    Get PDF
    A methyl methacrylate oligomerically-modified clay was used to prepare poly(methyl methacrylate) clay nanocomposites by melt blending and the effect of the clay loading level on the modified clay and corresponding nanocomposite was studied. These nanocomposites were characterized by X-ray diffraction, transmission electron microscopy, thermogravimetric analysis and cone calorimetry. The results show a mixed intercalated/delaminated morphology with good nanodispersion. The compatibility between the methylacrylate-subsituted clay and poly(methyl methacrylate) (PMMA) are greatly improved compared to other oligomerically-modified clays

    Effect of methyl groups on the thermal properties of polyesters from methyl substituted 1,4-butanediols and 4,4'-biphenyldicarboxylic acid

    Get PDF
    Results are reported on the effect of lateral methyl groups on the thermal properties of a series of polyesters prepared from diethyl 4,4-biphenyldicarboxylate and various methyl substituted 1,4-butanediols. The diols were 1,4-butanediol; 2-methyl-1,4-butanediol; 2,2-dimethyl-1,4-butanediol; 2,3-dimethyl-1,4-butanediol; 2,2,3-trimethyl-1,4-butanediol; and 2,2,3,3-tetramethyl-1,4-butanediol. Apart from the tetramethyl derivatve, the transition temperatures of the methyl substituted polyesters were lower with respect of the unsubstituted polyester. On the basis of polarized photomicrographs, a smectic A mesophase was found for the unsubstituted polyester, whereas a nematic mesophase was observed for the 2-methyl substituted polyster. The 2,2-dimethyl, 2,3-dimethyl, and the 2,2,3-trimethyl substituted polyesters showed no liquid crystalline behavior. The 2,2,3,3-tetramethyl derivative displayed a birefringent melt phase although the DSC measurements were not unambiguous. A copolyester based on diethyl 4,4-biphenyldicarboxylate, 1,4-butanediol, and 2,2,3,3-tetramethyl-1,4-butanediol showed a broad nematic mesophase. Further evidence for the nematic mesophase of this copolyester and the 2-methyl substituted polyester was provided by dynamic rheological experiments. Based on thermogravimetric analysis, it was concluded that the thermal stability was affected only when four methyl side groups were present in the spacer

    A Second-Generation Janus Scorpionate Ligand: Controlling Coordination Modes in Iron(II) Complexes by Steric Modulation

    Get PDF
    The second-generation Janus scorpionate ligand [HB(mtdaMe)3−] containing methyl-mercaptothiadiazolyl (mtdaMe) heterocyclic rings and (N,N,N-) and (S,S,S-) binding pockets has been prepared. The effect of methyl substitution versus the unsubstituted first-generation Janus scorpionate [HB(mtda)3]− on the coordination chemistry with alkali metals and on the binding preferences and on the ground spin state of iron(II) complexes has been studied structurally and by 57Fe Mossbauer Spectroscopy

    Methylation of guanidoacetic acid by homocystine plus choline with rat liver slices

    Get PDF
    The methylation of guanidoacetic acid by liver slices is accelerated by methionine; choline, under these conditions, exerts no significant accelerating effect (1). In view of the fact that homocystine plus choline can replace methionine for growth (2), and of the isotope experiments which proved the transfer in viva of the methyl groups of choline to creatine,(3) it has been suggested, from indirect evidence, that the pathway of the methyl group to creatine is more direct from methionine than from choline.(4) More specific evidence is desirable, especially as neither homocystine nor homocysteine has been identified in animal tissues

    Effect of oxygen, methyl mercaptan, and methyl chloride on friction behavior of copper-iron contacts

    Get PDF
    Sliding friction experiments were conducted with an iron rider on a copper disk and a copper rider on an iron disk. The sputter cleaned iron and copper disk surfaces were saturated with oxygen, methyl mercaptan, and methyl chloride at atmospheric pressure. Auger emission spectroscopy was used to monitor the surfaces. Lower friction was obtained in all experiments with the copper rider sliding on the iron disk than when the couple was reversed. For both iron and copper disks, methyl mercaptan gave the best surface coverage and was most effective in reducing friction. For both iron and copper disks, methyl chloride was the least effective in reducing friction. With sliding, copper transferred to iron and iron to copper

    Evaluation of the Effect of Tocopherols on the Stability of Biodiesel

    Get PDF
    End of Project ReportA comprehensive study was carried out on the effects of naturally occurring tocopherols and carotenoids on the stability of biodiesel-grade methyl esters. Commercially available tocopherols and carotenoids, α-, γ- and δ-tocopherol, carotene and asthaxanthin, were added to destabilised methyl esters and the solutions were exposed to air at 65oC. The stabilising effect of the added tocopherols and carotenoids was determined from the number of days needed to reach the same increase of viscosity as destabilised methyl ester without tocopherols after 1 day. All three tocopherols stabilised methyl esters; γ- being the most effective and α- the least. The stabilising effect of tocopherols increased with concentration up to an optimum level. Concentrations above this level did not improve stability significantly. The stabilising effect of the tocopherols also depended on the composition of the methyl ester; they were most effective in tallow methyl ester, and had the least effect on sunflower methyl ester. Carotene and asthaxanthin had no effect on the stability of the methyl esters. However an unidentified carotenoid in rape methyl ester changed the oxidation pattern by reducing rates of peroxide and viscosity increase, without affecting overall stability

    Methylated DNA recognition during the reversal of epigenetic silencing is regulated by cysteine and cerine residues in the Epstein-Barr Virus lytic switch protein

    Get PDF
    Epstein-Barr virus (EBV) causes infectious mononucleosis and is associated with various malignancies, including Burkitt's lymphoma and nasopharyngeal carcinoma. Like all herpesviruses, the EBV life cycle alternates between latency and lytic replication. During latency, the viral genome is largely silenced by host-driven methylation of CpG motifs and, in the switch to the lytic cycle, this epigenetic silencing is overturned. A key event is the activation of the viral BRLF1 gene by the immediate-early protein Zta. Zta is a bZIP transcription factor that preferentially binds to specific response elements (ZREs) in the BRLF1 promoter (Rp) when these elements are methylated. Zta's ability to trigger lytic cycle activation is severely compromised when a cysteine residue in its bZIP domain is mutated to serine (C189S), but the molecular basis for this effect is unknown. Here we show that the C189S mutant is defective for activating Rp in a Burkitt's lymphoma cell line. The mutant is compromised both in vitro and in vivo for binding two methylated ZREs in Rp (ZRE2 and ZRE3), although the effect is striking only for ZRE3. Molecular modeling of Zta bound to methylated ZRE3, together with biochemical data, indicate that C189 directly contacts one of the two methyl cytosines within a specific CpG motif. The motif's second methyl cytosine (on the complementary DNA strand) is predicted to contact S186, a residue known to regulate methyl-ZRE recognition. Our results suggest that C189 regulates the enhanced interaction of Zta with methylated DNA in overturning the epigenetic control of viral latency. As C189 is conserved in many bZIP proteins, the selectivity of Zta for methylated DNA may be a paradigm for a more general phenomenon
    corecore