65,811 research outputs found

    Metastability for reversible probabilistic cellular automata with self--interaction

    Get PDF
    The problem of metastability for a stochastic dynamics with a parallel updating rule is addressed in the Freidlin--Wentzel regime, namely, finite volume, small magnetic field, and small temperature. The model is characterized by the existence of many fixed points and cyclic pairs of the zero temperature dynamics, in which the system can be trapped in its way to the stable phase. %The characterization of the metastable behavior %of a system in the context of parallel dynamics is a very difficult task, %since all the jumps in the configuration space are allowed. Our strategy is based on recent powerful approaches, not needing a complete description of the fixed points of the dynamics, but relying on few model dependent results. We compute the exit time, in the sense of logarithmic equivalence, and characterize the critical droplet that is necessarily visited by the system during its excursion from the metastable to the stable state. We need to supply two model dependent inputs: (1) the communication energy, that is the minimal energy barrier that the system must overcome to reach the stable state starting from the metastable one; (2) a recurrence property stating that for any configuration different from the metastable state there exists a path, starting from such a configuration and reaching a lower energy state, such that its maximal energy is lower than the communication energy

    Transient Nucleation near the Mean-Field Spinodal

    Full text link
    Nucleation is considered near the pseudospinodal in a one-dimensional ϕ4\phi^4 model with a non-conserved order parameter and long-range interactions. For a sufficiently large system or a system with slow relaxation to metastable equilibrium, there is a non-negligible probability of nucleation occurring before reaching metastable equilibrium. This process is referred to as transient nucleation. The critical droplet is defined to be the configuration of maximum likelihood that is dynamically balanced between the metastable and stable wells. Time-dependent droplet profiles and nucleation rates are derived, and theoretical results are compared to computer simulation. The analysis reveals a distribution of nucleation times with a distinct peak characteristic of a nonstationary nucleation rate. Under the quench conditions employed, transient critical droplets are more compact than the droplets found in metastable equilibrium simulations and theoretical predictions.Comment: 7 Pages, 5 Figure

    On the feasibility of cooling and trapping metastable alkaline-earth atoms

    Get PDF
    Metastability and long-range interactions of Mg, Ca, and Sr in the lowest-energy metastable 3P2^3P_2 state are investigated. The calculated lifetimes are 38 minutes for Mg*, 118 minutes for Ca*, and 17 minutes for Sr*, supporting feasibility of cooling and trapping experiments. The quadrupole-quadrupole long-range interactions of two metastable atoms are evaluated for various molecular symmetries. Hund's case (c) 4_g potential possesses a large 100-1000 K potential barrier. Therefore magnetic trap losses can possibly be reduced using cold metastable atoms in a stretched M=2 state. Calculations were performed in the framework of ab initio relativistic configuration interaction method coupled with the random-phase approximation.Comment: 8 pages, 2 figures; to appear in PR

    Enhancement of stability in randomly switching potential with metastable state

    Full text link
    The overdamped motion of a Brownian particle in randomly switching piece-wise metastable linear potential shows noise enhanced stability (NES): the noise stabilizes the metastable system and the system remains in this state for a longer time than in the absence of white noise. The mean first passage time (MFPT) has a maximum at a finite value of white noise intensity. The analytical expression of MFPT in terms of the white noise intensity, the parameters of the potential barrier, and of the dichotomous noise is derived. The conditions for the NES phenomenon and the parameter region where the effect can be observed are obtained. The mean first passage time behaviours as a function of the mean flipping rate of the potential for unstable and metastable initial configurations are also analyzed. We observe the resonant activation phenomenon for initial metastable configuration of the potential profile.Comment: 9 pages, 5 figures. In press in "European Physical Journal B

    Transition Between Ground State and Metastable States in Classical 2D Atoms

    Full text link
    Structural and static properties of a classical two-dimensional (2D) system consisting of a finite number of charged particles which are laterally confined by a parabolic potential are investigated by Monte Carlo (MC) simulations and the Newton optimization technique. This system is the classical analog of the well-known quantum dot problem. The energies and configurations of the ground and all metastable states are obtained. In order to investigate the barriers and the transitions between the ground and all metastable states we first locate the saddle points between them, then by walking downhill from the saddle point to the different minima, we find the path in configurational space from the ground state to the metastable states, from which the geometric properties of the energy landscape are obtained. The sensitivity of the ground-state configuration on the functional form of the inter-particle interaction and on the confinement potential is also investigated

    Macroscopic quantum tunneling of two-component Bose-Einstein condensates

    Full text link
    We show theoretically the existence of a metastable state and the possibility of decay to the ground state through macroscopic quantum tunneling in two-component Bose-Einstein condensates with repulsive interactions. Numerical analysis of the coupled Gross-Pitaevskii equations clarifies the metastable states whose configuration preserves or breaks the symmetry of the trapping potential, depending on the interspecies interaction and the particle number. We calculate the tunneling decay rate of the metastable state by using the collective coordinate method under the WKB approximation. Then the height of the energy barrier is estimated by the saddle point solution. It is found that macroscopic quantum tunneling is observable in a wide range of particle numbers. Macroscopic quantum coherence between two distinct states is discussed; this might give an additional coherent property of two-component Bose condensed systems. Thermal effects on the decay rate are estimated.Comment: 11 pages, 10 figures, revtex

    Nucleation of a three-state spin model on complex networks

    Full text link
    We study the metastability and nucleation of the Blume-Capel model on complex networks, in which each node can take one of three possible spin variables {1,0,1}\left\{ {-1, 0, 1} \right\}. We consider the external magnetic field hh to be positive, and let the chemical potential λ\lambda vary between h-h and hh in a low temperature, such that the 11 configuration is stable, and 1-1 configuration and/or 00 configuration are metastable. Combining the heterogeneous mean-field theory with simulations, we show that there exist four regions with distinct nucleation scenarios depending on the values of hh and λ\lambda: the system undergoes a two-step nucleation process from 1-1 configuration to 00 configuration and then to 11 configuration (region I); nucleation becomes a one-step process without an intermediate metastable configuration directly from 1-1 configuration to 11 configuration (region II(1)) or directly from 00 configuration to 11 configuration (region II(2)) depending on the sign of λ\lambda; the metastability of the system vanishes and nucleation is thus irrelevant (region III). Furthermore, we show that in the region I nucleation rates for each step intersect that results in the occurrence of a maximum in the total nucleation rate.Comment: 9 pages, 4 figure
    corecore