65,811 research outputs found
Metastability for reversible probabilistic cellular automata with self--interaction
The problem of metastability for a stochastic dynamics with a parallel
updating rule is addressed in the Freidlin--Wentzel regime, namely, finite
volume, small magnetic field, and small temperature. The model is characterized
by the existence of many fixed points and cyclic pairs of the zero temperature
dynamics, in which the system can be trapped in its way to the stable phase.
%The characterization of the metastable behavior %of a system in the context of
parallel dynamics is a very difficult task, %since all the jumps in the
configuration space are allowed. Our strategy is based on recent powerful
approaches, not needing a complete description of the fixed points of the
dynamics, but relying on few model dependent results. We compute the exit time,
in the sense of logarithmic equivalence, and characterize the critical droplet
that is necessarily visited by the system during its excursion from the
metastable to the stable state. We need to supply two model dependent inputs:
(1) the communication energy, that is the minimal energy barrier that the
system must overcome to reach the stable state starting from the metastable
one; (2) a recurrence property stating that for any configuration different
from the metastable state there exists a path, starting from such a
configuration and reaching a lower energy state, such that its maximal energy
is lower than the communication energy
Transient Nucleation near the Mean-Field Spinodal
Nucleation is considered near the pseudospinodal in a one-dimensional
model with a non-conserved order parameter and long-range
interactions. For a sufficiently large system or a system with slow relaxation
to metastable equilibrium, there is a non-negligible probability of nucleation
occurring before reaching metastable equilibrium. This process is referred to
as transient nucleation. The critical droplet is defined to be the
configuration of maximum likelihood that is dynamically balanced between the
metastable and stable wells. Time-dependent droplet profiles and nucleation
rates are derived, and theoretical results are compared to computer simulation.
The analysis reveals a distribution of nucleation times with a distinct peak
characteristic of a nonstationary nucleation rate. Under the quench conditions
employed, transient critical droplets are more compact than the droplets found
in metastable equilibrium simulations and theoretical predictions.Comment: 7 Pages, 5 Figure
On the feasibility of cooling and trapping metastable alkaline-earth atoms
Metastability and long-range interactions of Mg, Ca, and Sr in the
lowest-energy metastable state are investigated. The calculated
lifetimes are 38 minutes for Mg*, 118 minutes for Ca*, and 17 minutes for Sr*,
supporting feasibility of cooling and trapping experiments. The
quadrupole-quadrupole long-range interactions of two metastable atoms are
evaluated for various molecular symmetries. Hund's case (c) 4_g potential
possesses a large 100-1000 K potential barrier. Therefore magnetic trap losses
can possibly be reduced using cold metastable atoms in a stretched M=2 state.
Calculations were performed in the framework of ab initio relativistic
configuration interaction method coupled with the random-phase approximation.Comment: 8 pages, 2 figures; to appear in PR
Enhancement of stability in randomly switching potential with metastable state
The overdamped motion of a Brownian particle in randomly switching piece-wise
metastable linear potential shows noise enhanced stability (NES): the noise
stabilizes the metastable system and the system remains in this state for a
longer time than in the absence of white noise. The mean first passage time
(MFPT) has a maximum at a finite value of white noise intensity. The analytical
expression of MFPT in terms of the white noise intensity, the parameters of the
potential barrier, and of the dichotomous noise is derived. The conditions for
the NES phenomenon and the parameter region where the effect can be observed
are obtained. The mean first passage time behaviours as a function of the mean
flipping rate of the potential for unstable and metastable initial
configurations are also analyzed. We observe the resonant activation phenomenon
for initial metastable configuration of the potential profile.Comment: 9 pages, 5 figures. In press in "European Physical Journal B
Transition Between Ground State and Metastable States in Classical 2D Atoms
Structural and static properties of a classical two-dimensional (2D) system
consisting of a finite number of charged particles which are laterally confined
by a parabolic potential are investigated by Monte Carlo (MC) simulations and
the Newton optimization technique. This system is the classical analog of the
well-known quantum dot problem. The energies and configurations of the ground
and all metastable states are obtained. In order to investigate the barriers
and the transitions between the ground and all metastable states we first
locate the saddle points between them, then by walking downhill from the saddle
point to the different minima, we find the path in configurational space from
the ground state to the metastable states, from which the geometric properties
of the energy landscape are obtained. The sensitivity of the ground-state
configuration on the functional form of the inter-particle interaction and on
the confinement potential is also investigated
Macroscopic quantum tunneling of two-component Bose-Einstein condensates
We show theoretically the existence of a metastable state and the possibility
of decay to the ground state through macroscopic quantum tunneling in
two-component Bose-Einstein condensates with repulsive interactions. Numerical
analysis of the coupled Gross-Pitaevskii equations clarifies the metastable
states whose configuration preserves or breaks the symmetry of the trapping
potential, depending on the interspecies interaction and the particle number.
We calculate the tunneling decay rate of the metastable state by using the
collective coordinate method under the WKB approximation. Then the height of
the energy barrier is estimated by the saddle point solution. It is found that
macroscopic quantum tunneling is observable in a wide range of particle
numbers. Macroscopic quantum coherence between two distinct states is
discussed; this might give an additional coherent property of two-component
Bose condensed systems. Thermal effects on the decay rate are estimated.Comment: 11 pages, 10 figures, revtex
Nucleation of a three-state spin model on complex networks
We study the metastability and nucleation of the Blume-Capel model on complex
networks, in which each node can take one of three possible spin variables
. We consider the external magnetic field to
be positive, and let the chemical potential vary between and
in a low temperature, such that the configuration is stable, and
configuration and/or configuration are metastable. Combining the
heterogeneous mean-field theory with simulations, we show that there exist four
regions with distinct nucleation scenarios depending on the values of and
: the system undergoes a two-step nucleation process from
configuration to configuration and then to configuration (region I);
nucleation becomes a one-step process without an intermediate metastable
configuration directly from configuration to configuration (region
II(1)) or directly from configuration to configuration (region II(2))
depending on the sign of ; the metastability of the system vanishes
and nucleation is thus irrelevant (region III). Furthermore, we show that in
the region I nucleation rates for each step intersect that results in the
occurrence of a maximum in the total nucleation rate.Comment: 9 pages, 4 figure
- …
