125,891 research outputs found

    Classification of metamorphic virus using n-grams signatures

    Get PDF
    Metamorphic virus has a capability to change, translate, and rewrite its own code once infected the system to bypass detection. The computer system then can be seriously damage by this undetected metamorphic virus. Due to this, it is very vital to design a metamorphic virus classification model that can detect this virus. This paper focused on detection of metamorphic virus using Term Frequency Inverse Document Frequency (TF-IDF) technique. This research was conducted using Second Generation virus dataset. The first step is the classification model to cluster the metamorphic virus using TF-IDF technique. Then, the virus cluster is evaluated using Naïve Bayes algorithm in terms of accuracy using performance metric. The types of virus classes and features are extracted from bi-gram assembly language. The result shows that the proposed model was able to classify metamorphic virus using TF-IDF with optimal number of virus class with average accuracy of 94.2%

    西南日本の熱変成超苦鉄質岩体中のかんらん石と輝石の組成変化に関する覚書

    Get PDF
    This short article presents some diagrams showing the compositional variations of primary and metamorphic olivine, orthopyroxene and clinopyroxene in peridotites and serpentinites from thermally metamorphosed ultramafic complexes in SW Japan. In contrast to olivine, which shows a gradual change of chemical composition corresponding with metamorphic grade, orthopyroxene and clinopyroxene show clear differences in composition between primary and metamorphic phases. Compared with primary pyroxenes, even though their compositions could be variable depending on original rock composition, metamorphic orthopyroxene and metamorphic clinopyroxene is clearly deficient in Cr(2)O(3) and CaO, and in Cr(2)O(3) and Al(2)O(3), respectively. These characteristics are useful for the discrimination between the pyroxenes of different origin

    Recycling Argon through Metamorphic Reactions: the Record in Symplectites

    Get PDF
    The 40Ar/39Ar ages of metamorphic micas that crystallized at high temperatures are commonly interpreted as cooling ages, with grains considered to have lost 40Ar via thermally-driven diffusion into the grain boundary network. Recently reported laser-ablation data suggest that the spatial distribution of Ar in metamorphic micas does not always conform to the patterns predicted by diffusion theory and that despite high metamorphic temperatures, argon was not removed efficiently from the local system during metamorphic evolution. In the Western Gneiss Region (WGR), Norway, felsic gneisses preserve microtextural evidence for the breakdown of phengite to biotite and plagioclase symplectites during near isothermal decompression from c. 20–25 to c. 8–12 kbar at ~700°C. These samples provide an ideal natural laboratory to assess whether the complete replacement of one K-bearing mineral by another at high temperatures completely ‘resets’ the Ar clock, or whether there is some inheritance of 40Ar in the neo-crystallized phase. The timing of the high-temperature portion of the WGR metamorphic cycle has been well constrained in previous studies. However, the timing of cooling following the overprint is still much debated. In-situ laser ablation spot dating in phengite, biotite-plagioclase symplectites and coarser, texturally later biotite yielded 40Ar/39Ar ages that span much of the metamorphic cycle. Together these data show that despite residence at temperatures of ~700°C, Ar is not completely removed by diffusive loss or during metamorphic recrystallization. Instead, Ar released during phengite breakdown appears to be partially reincorporated into the newly crystallizing biotite and plagioclase (or is trapped in fluid inclusions in those phases) within a close system. Our data show that the microtextural and petrographic evolution of the sample being dated provides a critical framework in which local 40Ar recycling can be tracked, thus potentially allowing 40Ar/39Ar dates to be linked more accurately to metamorphic history

    Archean metamorphic sequence and surfaces, Kangerdlugssuaq Fjord, East Greenland

    Get PDF
    The characteristics of Archean metamorphic surfaces and fabrics of a mapped sequence of rocks older than about 3000 Ma provide information basic to an understanding of the structural evolution and metamorphic history in Kangerdlugssuaq Fjord, east Greenland. This information and the additional results of petrologic and geochemical studies have culminated in an extended chronology of Archean plutonic, metamorphic, and tectonic events. The basis for the chronology is considered, especially the nature of the metamorphic fabrics and surfaces in the Archean sequence. The surfaces, which are planar mineral parageneses, may prove to be mappable outside Kangerdlugssuaq Fjord, and if so, will be helpful in extending the events that they represent to other Archean sequences in east Greenland. The surfaces will become especially important reference planes if the absolute ages of their metamorphic assemblages can be determined in at least one location where strain was low subsequent to their recrystallization. Once an isochron is obtained, the dynamothermal age of the regionally identifiable metamorphic surface is determined everywhere it can be mapped

    Detrital zircon SHRIMP U-Pb age study of the Cordillera Darwin Metamorphic Complex of Tierra del Fuego : sedimentary sources and implications for the evolution of the Pacific margin of Gondwana

    Get PDF
    The Cordillera Darwin Metamorphic Complex in the southernmost Andes includes a basement of probable Palaeozoic age, a mid-Jurassic and younger volcano-sedimentary cover, and a suite of Jurassic granites, all of which were jointly metamorphosed during the Cretaceous. Detrital zircon ages presented here show that some of the amphibolite-facies metamorphic rocks previously mapped as basement have a Jurassic protolith. Overall the detrital zircon age patterns for samples of the Cordillera Darwin basement differ from those of the Madre de Dios Terrane of the western Patagonian Andes with which they had been correlated; instead, they are more comparable with those from the Eastern Andes Metamorphic Complex, which apparently developed in a passive margin setting. The paucity of Cambrian detrital zircons indicates that the meta-igneous basement of the Magallanes foreland basin of central and northern Tierra del Fuego was not the main source of detritus for the protolith of the Cordillera Darwin Metamorphic Complex. The possibility is envisaged that the Magallanes Fagnano transform fault boundary between the Scotia and South America plates resulted from reactivation of an older, pre-Jurassic suture zone between the basement terranes of north–central Tierra del Fuego and Cordillera Darwin

    Late Cenozoic metamorphic evolution and exhumation of Taiwan

    Get PDF
    The Taiwan mountain belt is composed of a Cenozoic slate belt (Hsuehshan Range units, HR, and Backbone Slates, BS) and of accreted polymetamorphic basement rocks (Tananao Complex, TC). Ongoing crustal shortening has resulted from the collision between the Chinese continental margin and the Luzon volcanic arc, which initiated ~6.5 Ma ago. The grade and age of metamorphism and exhumation are a key record of the development of the orogenic wedge. Because the Taiwan mountain belt is mostly composed by accreted sediments lacking metamorphic index minerals, quantitative constraints on metamorphism are sparse. By contrast, these rocks are rich in carbonaceaous material (CM) and are therefore particularly appropriate for RSCM (Raman Spectroscopy of CM) thermometry. We apply this technique in addition to (U-Th)/He thermochronology on detrital zircons to assess peak metamorphic temperatures (T) and the late exhumational history respectively, along different transects in central and southern Taiwan. In the case of the HR units, we find evidence for high metamorphic T of at least 340°–350°C and locally up to 475°C, and for relative rapid exhumation with zircon (U-Th)/He ages in the range of 1.5–2 Ma. Farther east, the BS were only slightly metamorphosed (T < 330 °C), and zircons are not reset for (U-Th)/He. From the eastern BS to the inner TC schists, T gradually increases from ~350°C up to ~500°C following an inverted metamorphic gradient. Available geochronological constraints and the continuous thermal gradient from the BS to the basement rocks of the TC suggest that the high RSCM T of the TC were most probably acquired during the last orogeny, and were not inherited from a previous thermal event. Zircons yield (U-Th)/He ages of ~0.5–1.2 Ma. Peak metamorphic T and the timing of exhumation do not show along-strike variations over the TC in the studied area. In contrast, exhumation is laterally diachronous and decreases southward in the case of the HR units. In particular, our data imply that the HR units have been exhumed by a minimum of 15 km over the last few Ma. In the case of the BS, they show far less cumulated exhumation and much slower cooling rates. We propose that most of the deformation and exhumation of the Taiwan mountain belt is sustained through two underplating windows located beneath the Hsuehshan Range and the TC. Our data show significant departures from the predictions of the prevailing model in Taiwan, which assumes a homogeneous critical wedge with dominant frontal accretion. Our study sheds new light on how the mountain belt has grown as a possible result of underplating mostly
    corecore