4,669 research outputs found

    Accurate metasurface synthesis incorporating near-field coupling effects

    Full text link
    One of the most promising metasurface architectures for the microwave and terahertz frequency ranges consists of three patterned metallic layers separated by dielectrics. Such metasurfaces are well suited to planar fabrication techniques and their synthesis is facilitated by modelling them as impedance sheets separated by transmission lines. We show that this model can be significantly inaccurate in some cases, due to near-field coupling between metallic layers. This problem is particularly severe for higher frequency designs, where fabrication tolerances prevent the patterns from being highly-subwavelength in size. Since the near-field coupling is difficult to describe analytically, correcting for it in a design typically requires numerical optimization. We propose an extension of the widely used equivalent-circuit model to incorporate near-field coupling and show that the extended model can predict the scattering parameters of a metasurface accurately. Based on our extended model, we introduce an improved metasurface synthesis algorithm that gives physical insight to the problem and efficiently compensates for the perturbations induced by near-field coupling. Using the proposed algorithm, a Huygens metasurface for beam refraction is synthesized showing a performance close to the theoretical efficiency limit despite the presence of strong near-field coupling

    The Casimir zero-point radiation pressure

    Full text link
    We analyze some consequences of the Casimir-type zero-point radiation pressure. These include macroscopic "vacuum" forces on a metallic layer in-between a dielectric medium and an inert (ϵ(ω)=1\epsilon (\omega) = 1) one. Ways to control the sign of these forces, based on dielectric properties of the media, are thus suggested. Finally, the large positive Casimir pressure, due to surface plasmons on thin metallic layers, is evaluated and discussed.Comment: 4 2-column pages, LATE

    Interaction of radially polarized focused light with a prolate spheroidal nanoparticle

    Get PDF
    The interaction of a nanoparticle with light is affected by nanoparticle geometry and composition, as well as by focused beam parameters, such as the polarization and numerical aperture of the beam. The interaction of a radially focused beam with a prolate spheroidal nanoparticle is particularly important because it has the potential to produce strong near-field electromagnetic radiation. Strong and tightly localized longitudinal components of a radially polarized focused beam can excite strong plasmon modes on elongated nanoparticles such as prolate spheroids. In this study, near field radiation from a prolate spheriodal nanoparticle is investigated when it is illuminated with a radially polarized focused beam of light. Near-field radiation from the nanoparticle is investigated in the absence and presence of metallic layers. It is shown that the interaction of a radially polarized focused beam with a prolate spheroidal nanoparticle can be enhanced by creating images of monopole charges using metallic layers. In addition, it is also observed that the presence of a metallic layer shifts the resonance of the prolate spheroid toward longer wavelengths. Dipole, quadruple, and off resonance field distributions for particles with different sizes and aspect ratios are presented when they are illuminated with a radially focused beam of light

    Hydrophobic/icephobic coatings based on thermal sprayed metallic layers with subsequent surface functionalization

    Get PDF
    Hydrophobic/icephobic coatings have been fabricated using a combination of thermal sprayed metallic MCrAlY (M = Ni, Co) coatings with a subsequent deposition process using 1H,1H,2H,2H-perfluorooctyltriethoxysilane (POTS). The MCrAlY coatings provide the desirable surface roughness feature for hydrophobicity, and water contact angle of 135° was directly obtained after aged in the atmosphere for 1 week. However, it was found that the hydrophobicity of MCrAlY was not stable under water impinging due to unstable hydrocarbon absorption. Better hydrophobicity with water contact angle of 154° and improved durability have been achieved by further modification using POTS vapour on the rough MCrAlY coatings. X-ray photoelectron spectroscopy results revealed that replacement of absorption of hydrocarbon by functional C-F groups played important role in the improvement of hydrophobicity and durability. The ice adhesion test confirmed that lower ice adhesion strength of MCrAlY based coatings have been obtained compared with the threshold for icephobicity which is desirable to be applied as icephobic coatings for aircraft. The electro-thermal heating de-icing test showed an energy saving of 28.6% for de-icing with the two-step MCrAlY based coatings. The combination of strong metallic MCrAlY rough layers and the subsequent functionalization enables a new approach for the fabrication of durable hydrophobic/icephobic coatings

    Magnon Mediated Electric Current Drag Across a Ferromagnetic Insulator Layer

    Full text link
    In a semiconductor hererostructure, the Coulomb interaction is responsible for the electric current drag between two 2D electron gases across an electron impenetrable insulator. For two metallic layers separated by a ferromagnetic insulator (FI) layer, the electric current drag can be mediated by a nonequilibrium magnon current of the FI. We determine the drag current by using the semiclassical Boltzmann approach with proper boundary conditions of electrons and magnons at the metal-FI interface.Comment: 13 pages, 2 figures: to appear in PR

    Optimal Tc_c of cuprates: role of screening and reservoir layers

    Full text link
    We explore the role of charge reservoir layers (CRLs) on the superconducting transition temperature of cuprate superconductors. Specifically, we study the effect of CRLs with efficient short distance dielectric screening coupled capacitively to copper oxide metallic layers. We argue that dielectric screening at short distances and at frequencies of the order of the superconducting gap, but small compared to the Fermi energy can significantly enhance Tc_c, the transition temperature of an unconventional superconductor. We discuss the relevance of our qualitative arguments to a broader class of unconventional superconductors.Comment: 8 Pages, 4 figure

    Plasmon resonances of a prolate spheroid nanoparticle illuminated by a focused beam

    Get PDF
    The interaction of a radially focused beam with a prolate spheroidal nanoparticle is particularly important because it has the potential to produce strong nearfield electromagnetic radiation. Strong and tightly localized longitudinal components of a radially polarized focused beam can excite strong plasmon modes on elongated nanoparticles such as prolate spheroids. In this study, near field radiation from a prolate spheriodal nanoparticle is investigated when it is illuminated with a radially polarized focused beam of light. Nearfield radiation from the nanoparticle is investigated in the absence and presence of metallic layers

    New constraints for non-Newtonian gravity in nanometer range from the improved precision measurement of the Casimir force

    Get PDF
    We obtain constraints on non-Newtonian gravity following from the improved precision measurement of the Casimir force by means of atomic force microscope. The hypothetical force is calculated in experimental configuration (a sphere above a disk both covered by two metallic layers). The strengthenings of constraints up to 4 times comparing the previous experiment and up to 560 times comparing the Casimir force measurements between dielectrics are obtained in the interaction range 5.9 nm≤λ≤115\leq\lambda\leq 115 nm. Recent speculations about the presence of some unexplained attractive force in the considered experiment are shown to be unjustified.Comment: 5 pages, 1 figur
    • …
    corecore